精英家教网 > 高中数学 > 题目详情

【题目】户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,对本单位的50名员工进行了问卷调查,得到了如下列联表:

喜欢户外运动

不喜欢户外运动

合计

男性

5

女性

10

合计

50

已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由;
(3)经进一步调查发现,在喜欢户外运动的10名女性员工中,有4人还喜欢瑜伽.若从喜欢户外运动的10位女性员工中任选3人,记ξ表示抽到喜欢瑜伽的人数,求ξ的分布列和数学期望.
下面的临界值表仅供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式: ,其中n=a+b+c+d)

【答案】
(1)解:∵在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是

∴喜欢户外活动的男女员工共30人,其中男员工20人,列联表补充如下:

喜欢户外运动

不喜欢户外运动

合计

男性

20

5

25

女性

10

15

25

合计

30

20

50


(2)解:

∴有99.5%的把握认为喜欢户外运动与性别有关;


(3)解:ξ的可能取值为0,1,2,3,则

P(ξ=0)= = ;P(ξ=1)= = ;P(ξ=2)= = ;P(ξ=3)=

∴ξ的分布列为

ξ

0

1

2

3

P

数学期望Eξ=0× +1× +2× +3× =


【解析】(1)根据在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是 ,可得喜欢户外活动的男女员工共30人,其中男员工20人,从而可得列联表;(2)利用列联表,计算 ,与临界值比较,可得结论;(3)ξ的可能取值为0,1,2,3,求出相应的概率,可得ξ的分布列与数学期望.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)已知圆的圆心是直线轴的交点,且与直线相切,求圆的标准方程;

(2)已知圆,直线过点与圆相交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:,直线 ,过的一条动直线与直线相交于N,与圆C相交于P,Q两点,MPQ中点.

(1)时,求直线的方程

(2),试问是否为定值,若为定值,请求出的值若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=m﹣|2x+1|﹣|2x﹣3|,若x0∈R,不等式f(x0)≥0成立,
(1)求实数m的取值范围;
(2)若x+2y﹣m=6,是否存在x,y,使得x2+y2=19成立,若存在,求出x,y值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左右焦点,为椭圆的短轴顶点,且.

(1)求椭圆的方程

(2)过作直线交椭圆于两点,求的面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣lnx.
(1)若f(x)在x=3处取得极值,求实数a的值;
(2)若f(x)≥5﹣3x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个关于圆锥曲线的命题:

①设A,B是两个定点,k为非零常数,若|PA|-|PB|=k,则P的轨迹是双曲线;

②过定圆C上一定点A作圆的弦AB,O为原点,若.则动点P的轨迹是椭圆;

③方程的两根可以分别作为椭圆和双曲线的离心率;

④双曲线与椭圆有相同的焦点.

其中正确命题的序号为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】遂宁市观音湖港口船舶停靠的方案是先到先停.

(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.

(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C: 的离心率 ,且椭圆C上的点到点Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案