【题目】已知函数f(x)=m﹣|2x+1|﹣|2x﹣3|,若x0∈R,不等式f(x0)≥0成立,
(1)求实数m的取值范围;
(2)若x+2y﹣m=6,是否存在x,y,使得x2+y2=19成立,若存在,求出x,y值,若不存在,请说明理由.
【答案】
(1)解:由题意可得函数f(x)=m﹣|2x+1|﹣|2x﹣3|≥0有解,即 m≥|2x+1|+|2x﹣3|有解,
故 m大于或等于|2x+1|+|2x﹣3|的最小值.
由于|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,∴m≥4
(2)解:若x+2y﹣m=6,设存在x,y,使得x2+y2=19成立,则圆x2+y2=19和直线x+2y﹣m=6有交点,
即圆心(0,0)到直线x+2y﹣m﹣6=0的距离小于或等于半径 ,
即 ≤ ,故当﹣6﹣ ≤m≤﹣6+ 时,圆x2+y2=19和直线x+2y﹣m=6有交点.
由 ,求得 ,或
【解析】(1)由题意可得m≥|2x+1|+|2x﹣3|有解,利用绝对值三角不等式求得|2x+1|+|2x﹣3|的最小值,可得m的范围.(2)要使存在x,y,只要圆x2+y2=19和直线x+2y﹣m=6有交点,即圆心(0,0)到直线x+2y﹣m﹣6=0的距离小于或等于半径 ,由此求得m的范围.再解圆x2+y2=19和直线x+2y﹣m=6组成的方程组,求得直线和圆交点的坐标,即为所求的x、y的值.
【考点精析】根据题目的已知条件,利用绝对值不等式的解法的相关知识可以得到问题的答案,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB的中点.
(1)求证:AM∥平面PCD;
(2)设点N是线段CD上的一动点,当点N在何处时,直线MN与平面PAB所成的角最大?并求出最大角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)过点A ,离心率为 ,点F1 , F2分别为其左右焦点.
(1)求椭圆C的标准方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点P,Q,且 ?若存在,求出该圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,F是椭圆P: (a>b>0)的右焦点,已知A(0,﹣2)与椭圆左顶点关于直线y=x对称,且直线AF的斜率为 ,
(1)求椭圆P的方程;
(2)过点Q(﹣1,0)的直线l交椭圆P于M、N两点,交直线x=﹣4于点E, = , = ,证明:λ+μ为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,对本单位的50名员工进行了问卷调查,得到了如下列联表:
喜欢户外运动 | 不喜欢户外运动 | 合计 | |
男性 | 5 | ||
女性 | 10 | ||
合计 | 50 |
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是 .
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由;
(3)经进一步调查发现,在喜欢户外运动的10名女性员工中,有4人还喜欢瑜伽.若从喜欢户外运动的10位女性员工中任选3人,记ξ表示抽到喜欢瑜伽的人数,求ξ的分布列和数学期望.
下面的临界值表仅供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式: ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为 ,求b,c.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com