精英家教网 > 高中数学 > 题目详情

【题目】在平面内,已知四边形ABCD,CD⊥AD,∠CBD= ,AD=5,AB=7,且cos2∠ADB+3cos∠ADB=1,则BC的长为

【答案】-4
【解析】解:∵cos2∠ADB+3cos∠ADB=1,
∴2cos2∠ADB+3cos∠ADB﹣2=0,解得:cos∠ADB= 或﹣2(舍去).
∴∠ADB= ,又CD⊥AD,可得:∠BDC= ,∠BCD=
∵在△ABD中,AD=5,AB=7,由余弦定理可得:49=25+BD2﹣2×
∴解得:BD=8或﹣3(舍去).
∴在△BCD中,由正弦定理可得:
∴BC= =4
所以答案是: -4

【考点精析】本题主要考查了正弦定理的定义的相关知识点,需要掌握正弦定理:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱锥ABCD的棱长都相等,E是AB的中点,则异面直线CE与BD所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,则该程序运行后输出的k值是(

A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为: (α为参数).
(1)写出直线l的直角坐标方程;
(2)求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:,直线 ,过的一条动直线与直线相交于N,与圆C相交于P,Q两点,MPQ中点.

(1)时,求直线的方程

(2),试问是否为定值,若为定值,请求出的值若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌汽车4S店,对该品牌旗下的A型、B型、C型汽车进行维修保养,每辆车一年内需要维修的人工费用为200元,汽车4S店记录了该品牌三种类型汽车各100辆到店维修的情况,整理得下表:

车型

A型

B型

C型

频数

20

40

40

假设该店采用分层抽样的方法从上维修的100辆该品牌三种类型汽车中随机抽取10辆进行问卷回访.
(1)从参加问卷到访的10辆汽车中随机抽取两辆,求这两辆汽车来自同一类型的概率;
(2)某公司一次性购买该品牌A、B、C型汽车各一辆,记ξ表示这三辆车的一年维修人工费用总和,求ξ的分布列及数学期望(各型汽车维修的概率视为其需要维修的概率);
(3)经调查,该品牌A型汽车的价格与每月的销售量之间有如下关系:

价格(万元)

25

23.5

22

20.5

销售量(辆)

30

33

36

39

已知A型汽车的购买量y与价格x符合如下线性回归方程: = x+80,若A型汽车价格降到19万元,请你预测月销售量大约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=m﹣|2x+1|﹣|2x﹣3|,若x0∈R,不等式f(x0)≥0成立,
(1)求实数m的取值范围;
(2)若x+2y﹣m=6,是否存在x,y,使得x2+y2=19成立,若存在,求出x,y值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣lnx.
(1)若f(x)在x=3处取得极值,求实数a的值;
(2)若f(x)≥5﹣3x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上的三点 .

(1)求以 为焦点且过点 的椭圆的标准方程

(2)设点 关于直线 的对称点分别为 求以 为焦点且过点 的双曲线的标准方程.

查看答案和解析>>

同步练习册答案