精英家教网 > 高中数学 > 题目详情
(2012•丰台区二模)在平面直角坐标系xOy中,抛物线C的焦点在y轴上,且抛物线上的点P(x0,4)到焦点F的距离为5.斜率为2的直线l与抛物线C交于A,B两点.
(Ⅰ)求抛物线C的标准方程,及抛物线在P点处的切线方程;
(Ⅱ)若AB的垂直平分线分别交y轴和抛物线于M,N两点(M,N位于直线l两侧),当四边形AMBN为菱形时,求直线l的方程.
分析:(Ⅰ)设抛物线的方程,根据点P到焦点F的距离为5,可得抛物线的标准方程,利用导数,即可求得抛物线在P点处的切线方程;
(Ⅱ)设直线l的方程与抛物线方程联立,利用韦达定理,求得AB的中点,从而可得AB的垂直平分线方程,进一步确定M、N的坐标,即可求得直线l的方程.
解答:解:(Ⅰ)依题意设抛物线C:x2=2py(p>0),
因为点P到焦点F的距离为5,所以点P到准线y=-
p
2
的距离为5.
因为P(x0,4),所以由抛物线准线方程可得
p
2
=1
,∴p=2.
所以抛物线的标准方程为x2=4y.                   …(4分)
y=
1
4
x2
,所以 y′=
1
2
x
,点P(±4,4),
所以y′|x=-4=
1
2
×(-4)=-2
y′|x=4=
1
2
×4=2

所以点P(-4,4)处抛物线切线方程为y-4=-2(x+4),即2x+y+4=0;点P(4,4)处抛物线切线方程为y-4=2(x-4),即2x-y-4=0.
所以P点处抛物线切线方程为2x+y+4=0,或2x-y-4=0.   …(7分)
(Ⅱ)设直线l的方程为y=2x+m,A(x1,y1),B(x2,y2),
联立
x2=4y
y=2x+m
,消y得x2-8x-4m=0,△=64+16m>0.
所以x1+x2=8,x1x2=-4m,
所以
x1+x2
2
=4
y1+y2
2
=8+m

即AB的中点为Q(4,8+m).
所以AB的垂直平分线方程为y-(8+m)=-
1
2
(x-4)

因为四边形AMBN为菱形,所以M(0,m+10),
因为M,N关于Q(4,8+m)对称,所以N点坐标为N(8,m+6),
因为N在抛物线上,所以64=4×(m+6),即m=10,
所以直线l的方程为y=2x+10.       …(14分)
点评:本题考查抛物线的标准方程,考查抛物线的切线方程,考查直线与抛物线的位置关系,考查韦达定理的而运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•丰台区二模)执行如图所示的程序框图,若输出的结果为63,则判断框中应填(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区二模)如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,Q是棱PA上的动点.
(Ⅰ)若Q是PA的中点,求证:PC∥平面BDQ;
(Ⅱ)若PB=PD,求证:BD⊥CQ;
(Ⅲ)在(Ⅱ)的条件下,若PA=PC,PB=3,∠ABC=60°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区二模)从5名学生中任选4名分别参加数学、物理、化学、生物四科竞赛,且每科竞赛只有1人参加,若甲不参加生物竞赛,则不同的选择方案共有
96
96
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区二模)在平面直角坐标系中,若点A,B同时满足:①点A,B都在函数y=f(x)图象上;②点A,B关于原点对称,则称点对(A,B)是函数y=f(x)的一个“姐妹点对”(规定点对(A,B)与点对(B,A)是同一个“姐妹点对”).那么函数f(x)=
x-4,x≥0
x2-2x,x<0
的“姐妹点对”的个数为
1
1
;当函数g(x)=ax-x-a有“姐妹点对”时,a的取值范围是
a>1
a>1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区二模)某地区恩格尔系数y(%)与年份x的统计数据如下表:
年份x 2004 2005 2006 2007
恩格尔系数y(%) 47 45.5 43.5 41
从散点图可以看出y与x线性相关,且可得回归方程为
?
y
=
?
b
x+4055.25
,据此模型可预测2012年该地区的恩格尔系数(%)为
31.25
31.25

查看答案和解析>>

同步练习册答案