精英家教网 > 高中数学 > 题目详情

(14分)如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.

(1)求证:MN∥平面PAD;

(2)求证:平面PMC⊥平面PCD.

 

【答案】

见解析

【解析】

试题分析:如答图所示

⑴设PD的中点为E,连结AE、NE,

由N为PD的中点知ENDC,

又ABCD是矩形,∴DCAB,∴ENAB

又M是AB的中点,∴ENAN,

∴AMNE是平行四边形

∴MN∥AE,而AE平面PAD,NM平面PAD

∴MN∥平面PAD

证明:⑵∵PA=AD,∴AE⊥PD,

又∵PA⊥平面ABCD,CD平面ABCD,

∴CD⊥PA,而CD⊥AD,∴CD⊥平面PAD

∴CD⊥AE, ∵PD∩CD=D,∴AE⊥平面PCD,

∵MN∥AE,∴MN⊥平面PCD,

又MN平面PMC,

∴平面PMC⊥平面PCD.

考点:本题主要考查平行关系及垂直关系。

点评:立体几何问题,常常要转化成平面几何问题。要牢固树立这种转化意识,从而运用平面几何知识解答问题。这里较多地运用了三角形中的线线平行关系。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求二面角C-PD-E的大小;
(Ⅲ)求点B到平面PDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面是一个矩形,AB=3.AD=1.又PA⊥AB,PA=4,
∠PAD=60°.求:
(1)四棱锥P-ABCD的体积.
(2)二面角P-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
(1)求线段PD的长;
(2)若PC=
11
R
,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)如图所示,四棱锥P-ABCD中,ABCD为正方形,PA⊥AD,E,F,G分别是线段PA,PD,CD的中点.
求证:
(1)BC∥平面EFG;
(2)平面EFG⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,PA=AD=AB=1.
(1)证明:EB∥平面PAD;
(2)证明:BE⊥平面PDC;
(3)求三棱锥B-PDC的体积V.

查看答案和解析>>

同步练习册答案