精英家教网 > 高中数学 > 题目详情

设关于x函数 其中0
将f(x)的最小值m表示成a的函数m=g(a);
是否存在实数a,使f(x)>0在上恒成立?
是否存在实数a,使函数f(x) 在上单调递增?若存在,写出所有的a组成的集合;若不存在,说明理由.

(1)(2)不存在a;(3).

解析试题分析:(1)先利用二倍角公式将化简,将其看成的二次函数,从而转化成求二次函数的最值问题.因为含参数,要注意定义域的范围,对参数进行讨论.
(2)恒成立,即求的最大值大于0即可.而的最大值为,所以无解.故不存在a,使得恒成立.
(3)本题可看成二次函数 上递增,只需上单调递减,故.
(1)设, 由
 



 
恒成立
由于的最大值为,所以无解.
故不存在a,使得恒成立.
(3)上的减函数,故上递增,只需
上单调递减,故
所以存在,使函数为增函数.
考点:二倍角公式,二次函数的性质,最值,恒成立问题,等价转化的方法,函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数其中.
(1)已知,求的值;
(2)若在区间恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数的最小值;
(2)对一切恒成立,求实数的取值范围;
(3)证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=xk+b(其中k,b∈R且k,b为常数)的图象经过A(4,2)、B(16,4)两点.
(1)求f(x)的解析式;
(2)如果函数g(x)与f(x)的图象关于直线y=x对称,解关于x的不等式:g(x)+g(x-2)>2a(x-2)+4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了寻找马航残骸,我国“雪龙号”科考船于2014年3月26日从港口出发,沿北偏东角的射线方向航行,而在港口北偏东角的方向上有一个给科考船补给物资的小岛海里,且.现指挥部需要紧急征调位于港口正东海里的处的补给船,速往小岛装上补给物资供给科考船.该船沿方向全速追赶科考船,并在处相遇.经测算当两船运行的航线与海岸线围成的三角形的面积最小时,这种补给方案最优.

(1)求关于的函数关系式
(2)应征调位于港口正东多少海里处的补给船只,补给方案最优?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数.
(1)求的值;
(2)若方程有且只有一个根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆c:(a>b>0)的离心率为,过其右焦点F与长轴垂直的弦长为1,
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD、AB距离分别为9m、3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN∶NE=16∶9.线段MN必须过点P,端点M、N分别在边AD、AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
 
(1)用x的代数式表示AM;
(2)求S关于x的函数关系式及该函数的定义域;
(3)当x取何值时,液晶广告屏幕MNEF的面积S最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定义域.
(2)求f(x)在区间上的最大值.

查看答案和解析>>

同步练习册答案