精英家教网 > 高中数学 > 题目详情
12.“x=1”是“x2+x-2=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 求出方程x2+x-2=0的根,根据充分必要条件的定义判断即可.

解答 解:由“x2+x-2=0”解得:x=-2或x=1,
故“x=1”是“x2+x-2=0”的充分不必要条件,
故选:A.

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(2,1).若m实数,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则m=(  )
A.-7B.-6C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x2-2x+2a-a2≤0},B={x|sin(πx-$\frac{π}{3}}$)+$\sqrt{3}$cos(πx-$\frac{π}{3}}$)=0}.
(1)若2∈A,求a的取值范围;
(2)若A∩B恰有3个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P(x,y)在椭圆x2+4y2=4上,则$\frac{3}{4}{x^2}+2x-{y^2}$的最大值为(  )
A.8B.7C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:?c>0,y=(5-c)x在R上是增函数,命题q:?x∈R,x2+2x+c>0,若p∧q为假命题,p∨q为真命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2,F为CD中点.
(Ⅰ)求证:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的正弦值;
(Ⅲ)求点A到平面CDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|3≤3x≤27},B={x|log2x>1}.
(1)求A∩(∁RB);
(2)已知集合C={x|1<x<a},若C∩A=C,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知四边形ABCD和ABEG均为平行四边形,点E在平面ABCD内的射影恰好为点A,以BD为直径的圆经过点A,C,AG的中点为F,CD的中点为P,且AD=AB=AE
(Ⅰ)求证:平面EFP⊥平面BCE
(Ⅱ)求二面角P-EF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,已知四棱锥S-ABCD的底面为矩形且SA⊥底面ABCD,若侧棱SC=5$\sqrt{2}$,则此四棱锥的外接球表面积为(  )
A.25πB.50πC.100πD.200π

查看答案和解析>>

同步练习册答案