精英家教网 > 高中数学 > 题目详情
12.已知数列{an}满足${a_n}+{a_{n-1}}={({-1})^{\frac{{n({n+1})}}{2}}}n,{S_n}$是其前n项和,若S2017=-1007-b,且a1b>0,则$\frac{1}{a_1}+\frac{2}{b}$的最小值为3+2$\sqrt{2}$.

分析 由已知得:a3+a2=3,a5+a4=-5,…a2017+a2016=-2017,把以上各式相加得:S2017-a1=-1008,可得a1+b=1,又a1b>0,a1,b>0.再利用“乘1法”与基本不等式性质即可得出.

解答 解:由已知得:a3+a2=3,a5+a4=-5,…a2017+a2016=-2017,
把以上各式相加得:S2017-a1=-1008,
即:a1-1008=-1007-b,
∴a1+b=1,又a1b>0,
∴a1,b>0.
则$\frac{1}{a_1}+\frac{2}{b}$=(a1+b)$(\frac{1}{{a}_{1}}+\frac{2}{b})$=3+$\frac{b}{{a}_{1}}$+$\frac{2{a}_{1}}{b}$≥3+$2\sqrt{\frac{b}{{a}_{1}}•\frac{2{a}_{1}}{b}}$=3+2$\sqrt{2}$,当且仅当b=$\sqrt{2}$a1=2-$\sqrt{2}$时取等号.
故答案为:$3+2\sqrt{2}$.

点评 本题考查了“累加求和”、“乘1法”与基本不等式性质,考查了分类讨论方法、推理能力与就计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,已知PA垂直于平行四边形ABCD所在平面,若PC⊥BD,则平行四边形ABCD一定是(  )
A.正方形B.菱形C.矩形D.非上述三种图形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\frac{1}{x}$+log2$\frac{1+ax}{1-x}$为奇函数,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.解α的终边过点P(4,-3),则cosα的值为(  )
A.$\frac{4}{5}$B.$-\frac{3}{5}$C.4D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列几个命题正确的个数是(  )
①方程x2+(a-3)x+a=0有一个正根,一个负根,则a<0;
②函数$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函数,但不是奇函数;
③函数f(x+1)的定义域是[-1,3],则f(x2)的定义域是[0,2];
④一条曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校开展运动会,招募了8名男志愿者和12名女志愿者,将这20名志愿者的身高编成如下茎叶图(单位:cm)
若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”.
(Ⅰ)求8名男志愿者的平均身高和12名女志愿者身高的中位数;
(Ⅱ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.${({2x+\frac{1}{x}})^5}$的展开式中,x3的系数是80(用数学填写答案).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.图中曲线的方程可以是(  )
A.(x+y-1)•(x2+y2-1)=0B.$\sqrt{x+y-1}•({x^2}+{y^2}-1)=0$
C.$(x+y-1)•\sqrt{{x^2}+{y^2}-1}=0$D.$\sqrt{x+y-1}•\sqrt{{x^2}+{y^2}-1}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:
与教育有关与教育无关合计
301040
35540
合计651580
(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).

查看答案和解析>>

同步练习册答案