精英家教网 > 高中数学 > 题目详情
如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE=
1
2
ED,延长DB到点F,使FB=
1
2
BD,连结AF.求证:
(Ⅰ)△BDE∽△FDA;
(Ⅱ)FA2=FB•FD.
考点:与圆有关的比例线段,相似三角形的判定
专题:选作题,立体几何
分析:(Ⅰ)利用AE=
1
2
ED,FB=
1
2
BD,可得
DE
DA
=
DB
DF
=
2
3
,利用∠EDB=∠ADF,可得△BDE∽△FDA;
(Ⅱ)证明OA⊥FA,可得直线AF与⊙O相切,即可证明FA2=FB•FD.
解答: 证明:(Ⅰ)在△BDE和△FDA中,
∵AE=
1
2
ED,FB=
1
2
BD,
DE
DA
=
DB
DF
=
2
3

∵∠EDB=∠ADF,
∴△BDE∽△FDA;
(Ⅱ)连OA,OB,OC,则
∵AB=AC,
∴∠BOA=∠COA,
∵OB=OC,
∴OA⊥BC,
∵△BDE∽△FDA,
∴∠EBD=∠AFD,
∴BC∥FA,
∵OA⊥BC,
∴OA⊥FA,
∴直线AF与⊙O相切,
∴FA2=FB•FD.
点评:本题考查了切线的判定定理:过半径的外端点与半径垂直的直线是圆的切线.也考查了垂径定理的推论以及平行线分线段成比例定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输入的N=2014,则输出的S=(  )
A、-
1
4
B、5
C、2013
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=-x2+4x+2,x∈[-1,1]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+px+q,不等式f(x)<0的解集是(-2,3)
(1)求实数p和q的值;
(2)解不等式qx2+px+1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:?x∈R,x2+2x-m>0恒成立;q:方程x2+2(m-2)x-3m+10=0无实根,若p或q为真,p且q为假,则求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|+2x,a∈R.
(Ⅰ)当a=2时,解不等式f(x)≥4x+2的解集;
(Ⅱ)若存在x使f(x)≤-|x+2|+2x+1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,如果?x∈D,?y∈D,使
f(x)+f(y)
2
=1成立,则称函数f(x)在定义域上为“相依函数”.给出下列五个函数①y=x3;②y=e-x;③y=lgx;④y=2cosx+1;⑤y=x+
1
x
,则早其定义域上为“相依函数”的函数序号是
 
.(填出所有满足条件的函数符号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在正方形ABCD中,点E是边BC的中点,在边AB上任取一点F,则△ADF与△BFE的面积之比不小于1的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过曲线y=
1
2
x3上的点(1,
1
2
)作曲线的切线m,则该切线m与圆O:x2+y2=1相交的弦长为
 

查看答案和解析>>

同步练习册答案