科目:高中数学 来源: 题型:
已知椭圆
的左右两焦点分别为
,
是椭圆上一点,且在
轴上方,
.
(1)求椭圆的离心率
的取值范围;
(2)当
取最大值时,过
的圆
的截
轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线
上任一点
引圆
的两条切线,切点分别为
.试探究直线
是否过定点?若过定点,请求出该定点;否则,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆
+
=1(a>b>0)的左、右焦点分别为F1,F2,点M(0,2)是椭圆的一个顶点,△F1MF2是等腰直角三角形.
(1)求椭圆的方程;
(2)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,
且k1+k2=8,证明:直线AB过定点
.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在四棱锥O—ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA中点。
(1)求证:直线BD⊥平面OAC;
(2)求点A到平面OBD的距离。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com