精英家教网 > 高中数学 > 题目详情
(2013•普陀区二模)某班从4名男生、2名女生中选出3人参加志愿者服务,若选出的男生人数为ξ,则ξ的方差Dξ=
0.4
0.4
分析:本题是一个超几何分步,用ξ表示其中男生的人数,ξ可能取的值为1,2,3.结合变量对应的事件和超几何分布的概率公式,写出变量的分布列和方差.
解答:解:依题意得,随机变量ξ服从超几何分布,
随机变量ξ表示其中男生的人数,ξ可能取的值为1,2,3.
P(ξ=k)=
C
k
4
C
3-k
2
C
3
6
,k=1,2,3.
∴所以X的分布列为:
ξ 1 2 3
P
1
5
 
 
3
5
1
5
 
由分布列可知Eξ=1×
1
5
+2×
3
5
+3×
1
5
=2,
∴Eξ2=
22
5

Dξ=Eξ2-(Eξ)2
=
22
5
-22
=0.4,
故答案为:0.4.
点评:本小题考查离散型随机变量分布列和数学期望,考查超几何分步,考查运用概率知识解决实际问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)函数y=
log2(x-1)
的定义域为
[2,+∞)
[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知双曲线C:
x2
a2
-
y2
b2
=1
的焦距为10,点P(2,1)在C的渐近线上,则C的方程为
x2
20
-
y2
5
=1
x2
20
-
y2
5
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)若函数f(x)=x2+ax+1是偶函数,则函数y=
f(x)|x|
的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知函数f(x)=Acos(ωx+?)(A>0,ω>0,-
π
2
<?<0
)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2)
(1)求函数f(x)的解析式;
(2)若锐角θ满足cosθ=
1
3
,求f(2θ)的值.

查看答案和解析>>

同步练习册答案