精英家教网 > 高中数学 > 题目详情

已知双曲线与椭圆x2+4y2=64共焦点,它的一条渐近线方程为x-=0,求双曲线的方程.

答案:
解析:

  解法一:由于双曲线的一条渐近线方程为x-=0,则另一条为x+=0.可设双曲线方程为

  x2-3y2=λ(λ>0)即=1,

  由椭圆方程=1可知,

  c2=a2-b2=64-16=48,

  双曲线与椭圆共焦点,则=48,

  ∴λ=36.

  故所求双曲线方程为=1.

  解法二:双曲线与椭圆共焦点,可设双曲线方

  =1,

  由渐近线方程y=可得

  ,∴λ=28,

  故所求双曲线方程为=1.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线x2-
y23
=1

(1)求此双曲线的渐近线方程;
(2)若过点(2,3)的椭圆与此双曲线有相同的焦点,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C与椭圆x2+5y2=5有共同的焦点,且一条渐近线方程为y=
3
x

(1)求双曲线C的方程;
(2)设双曲线C的焦点分别为F1、F2,过焦点F1作实轴的垂线与双曲线C相交于A、B两点,求△ABF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1:x2-y2=m(m>0)与椭圆C2
x2
a2
+
y2
b2
=1
有公共焦点F1F2,点N(
2
,1)
是它们的一个公共点.
(1)求C1,C2的方程;
(2)过点F2且互相垂直的直线l1,l2与圆M:x2+(y+1)2=4分别相交于点A,B和C,D,求|AB|+|CD|的最大值,并求此时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源:2010年高考数学热点题型4:解析几何(解析版) 题型:解答题

已知双曲线C1:x2-y2=m(m>0)与椭圆有公共焦点F1F2,点是它们的一个公共点.
(1)求C1,C2的方程;
(2)过点F2且互相垂直的直线l1,l2与圆M:x2+(y+1)2=4分别相交于点A,B和C,D,求|AB|+|CD|的最大值,并求此时直线l1的方程.

查看答案和解析>>

同步练习册答案