精英家教网 > 高中数学 > 题目详情
5.如果双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是(2,+∞).

分析 先设出双曲线右支任意一点坐标,根据到右焦点的距离和到中心的距离相等,利用两点间距离公式建立等式求得x,进而利用x的范围确定a和c的不等式关系,进而求得e的范围,同时根据双曲线的离心率等于2时,右支上只有一个点即顶点到中心和右焦点的距离相等,所以不能等于2,最后综合求得答案.

解答 解:设双曲线右支任意一点坐标为(x,y)则x≥a,
∵到右焦点的距离和到中心的距离相等,
由两点间距离公式:x2+y2=(x-c)2+y2得x=$\frac{c}{2}$,
∵x≥a,
∴$\frac{c}{2}$≥a,得e≥2,
又∵双曲线的离心率等于2时,右支上只有一个点即顶点到中心和右焦点的距离相等,
所以不能等于2.
故答案为:(2,+∞).

点评 本题主要考查了双曲线的简单性质.解题的关键是求得a和c的不等式关系,考查了学生转化和化归的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)满足f(x+1)=$\frac{1+f(x)}{1-f(x)}$,若f(0)=2010.求f(2014)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.x8+1=(x4+$\sqrt{2}$x2+1)(x4+ax2+1),则a=-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知α是钝角,sinα=sin(π-2),求α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=|x2-4x+3|的单调增区间为[1,2],[3,+∞),单调减区间为(-∞,1],[2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知关于x的方程x2+2ax+b=0有两个实根x1,x2,且x1∈[-1,0],x2∈[1,2].
(1)求a+b的取值范围;
(2)当a+b最小时,不等式x2+2amx+b≥mx2+m在x>-3时恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线的渐近线方程为x±2y=0,且双曲线过点M(4,$\sqrt{3}$),则双曲线的方程为x2-4y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N*),且a1=2,则a2015=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解方程:3lnx-3=ln2x.

查看答案和解析>>

同步练习册答案