精英家教网 > 高中数学 > 题目详情
13.已知A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,若3和7的原象分别是5和9,则6在f下的象是(  )
A..3B.4C.5D.6

分析 根据映射的定义进行判断求解即可.

解答 解:∵3和7的原象分别是5和9,
∴由$\left\{\begin{array}{l}{5a+b=3}\\{9a+b=7}\end{array}\right.$,解得a=1,b=-2,
即f:x→y=x-2,
则当x=6时,y=6-2=4,
故选:B.

点评 本题主要考查映射的定义,根据条件求出a,b的值是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.三角形三边长分别是6、8、10,那么它最短边上的高为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线a∥直线b,直线b∥平面α,则a与α的位置关系是a∥α或a?α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足:$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{x≤4}\end{array}}\right.$,则$\frac{x}{y}$的取值范围是[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=logm(x2+4x+4a+1)(m>0,且m≠1)对于任意x∈[0,+∞)都有意义.
(1)求实数a的取值范围;
(2)在函数上是否存在不同的两点,使过这两点的直线平行于x轴?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=$\frac{ax+2015b}{{x}^{2}+1}$是定义在(-∞,+∞)上的奇函数,且f($\frac{1}{3}$)=$\frac{3}{10}$.
(1)求实数a,b,并确定函数f(x)的解析式;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)写出f(x)的单调减区间,并判断f(x)有无最大值或最小值?如有,写出最大值或最小值.(本小问不需说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知x>0,y≥0,x+2y=1,求函数w=log${\;}_{\frac{1}{2}}$(2xy+y2+1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某公司为加强内部管理,降低成本,2004年1月管理费用为20万元,从2月份开始每月都比上一个月降低费用3000元,该公司1至6月份的管理费用是月份序号的函数,试用列表法、图象法、解析法多种形式表示这个函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=t}\\{y=3t+a}\end{array}\right.$,以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(1)求曲线C的直角坐标方程;
(2)若直线l过点(2,3),求直线l被圆C截得的弦长.

查看答案和解析>>

同步练习册答案