精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ) 证明f(x)在[1,+∞)上是增函数;
(Ⅱ) 求f(x)在[1,4]上的最大值及最小值.

(I)证明:在[1,+∞)上任取x1,x2,且x1<x2(2分)
(1分)
=(1分)
∵x1<x2∴x1-x2<0
∵x1∈[1,+∞),x2∈[1,+∞)∴x1x2-1>0
∴f(x1)-f(x2)<0即f(x1)<f(x2
故f(x)在[1,+∞)上是增函数(2分)
(II)解:由(I)知:
f(x)在[1,4]上是增函数
∴当x=1时,有最小值2;
当x=4时,有最大值(2分)
分析:(I)用单调性定义证明,先任取两个变量且界定大小,再作差变形看符号.
(II)由(I)知f(x)在[1,+∞)上是增函数,可知在[1,4]也是增函数,则当x=1时,取得最小值,当x=4时,取得最大值.
点评:本题主要考查单调性证明和应用单调性求函数最值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=tanx 满足tan(x+
π
4
)=
1+tanx
1-tanx
由该等式也能推证出y=tanx的周期为π,已知函数y=f(x)满足f(x+a)=
1+f(x)
1-f(x)
,x∈R.a为非零的常数,根据上述论述我们可以类比出函数f(x)的周期为
4a
4a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
2
x
+alnx(x>0)

(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx(a≠0)的导函数f′(x)=2x-2,数列{an}的前n项和为Sn,点Pn(n,Sn)均在函数y=f(x)的图象上.若bn=
1
2
(an+3)
(1)当n≥2时,试比较bn+12bn的大小;
(2)记cn=
1
bn
(n∈N*),试证c1+c2+…+c400<39.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+ln(x+1)
x
(x>0),
(1)函数f(x) 在区间(0,+∞)上是增函数还是减函数?证明你的结论;
(2)证明:当x>0时,f(x)>
3
x+1
恒成立;
(3)试证:(1+1•2)(1+2•3)…[1+n(n+1)]>e2n-3(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知函数f(x)=ax3+bx2+c(a,b,c∈R,a≠0)的图象过点P(-1,2)且在P处的切线与直线x-3y=0垂直.
(Ⅰ)若c=0,试求函数f(x)的单调区间;
(Ⅱ)若a>0,b>0且f(x)在区间(-∞,m)及(n,+∞)上均为增函数,试证:n-m>1.

查看答案和解析>>

同步练习册答案