精英家教网 > 高中数学 > 题目详情
3.如图圆柱的底面周长为4π,高为2,圆锥的底面半径是1,则该几何体的体积为$\frac{22π}{3}$

分析 由已知计算出圆柱和圆锥的体积,相减可得答案.

解答 解:由已知可得:
圆柱的底面半径为2,高为2,
故圆柱的体积为:π×22×2=8π,
又∵圆锥的底面半径是1,高为2,
故圆锥的体积为:$\frac{1}{3}$π×12×2=$\frac{2π}{3}$,
故组合体的体积V=8π-$\frac{2π}{3}$=$\frac{22π}{3}$,
故答案为:$\frac{22π}{3}$.

点评 本题考查的知识点是旋转体,圆柱和圆锥的体积公式,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnxx+bx的图象过点($\frac{1}{e}$,$\frac{1}{e}$),且在点(1,f(1))处的切线与直线x+y-e=0垂直(e为自然数的底数,且e=2.71828…)
(1)求a、b的值;
(2)若存在x0∈[$\frac{1}{e}$,e],使得不等式f(x0)+$\frac{1}{2}$x02-$\frac{1}{2}$tx0≥-$\frac{3}{2}$成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在等差数列{an}中,已知前20项之和S20=170,则a5+a16=17.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)求椭圆$\frac{x^2}{4}+{y^2}=1$的长轴和短轴的长、离心率、焦点和顶点的坐标.
(2)求焦点在y轴上,焦距是4,且经过点M(3,2)的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.游客从某旅游景区的景点A处至景点C处有两条线路.线路1是从A沿直线步行到C,线路2是先从A沿直线步行到景点B处,然后从B沿直线步行到C.现有甲、乙两位游客从A处同时出发匀速步行,甲的速度是乙的速度的$\frac{11}{9}$倍,甲走线路2,乙走线路1,最后他们同时到达C处.经测量,AB=1040m,BC=500m,则sin∠BAC等于$\frac{5}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.曲线f(x)=$\sqrt{x}$+$\frac{a}{x}$在(1,a+1)处的切线与直线3x+y=0垂直,则a等于(  )
A.-$\frac{5}{2}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=excosx,则函数f(x)在点(0,f(0))处的切线方程为(  )
A.y=1B.x-y+1=0C.x+y+1=0D.x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对任意的x∈[-$\frac{π}{6}$,$\frac{π}{2}$],不等式sin2x+asinx+a+3≥0恒成立,则实数a的取值范围是a≥-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤$\frac{π}{2}$),其图象与直线y=-1相邻两个交点的距离为π.若f(x)>1对任意x∈(-$\frac{π}{12}$,$\frac{π}{3}$)恒成立,则φ的取值范围是(  )
A.[$\frac{π}{12}$,$\frac{π}{2}$]B.[$\frac{π}{6}$,$\frac{π}{3}$]C.[$\frac{π}{12}$,$\frac{π}{3}$]D.($\frac{π}{6}$,$\frac{π}{2}$]

查看答案和解析>>

同步练习册答案