精英家教网 > 高中数学 > 题目详情
已知
i
j
分别是平面内互相垂直的两个单位向量,设向量a
i
+b
j
i
j
的夹角分别为α,β,则cos2α+cos2β的值等于
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用向量的夹角公式可得cosα,cosβ,进而得出答案.
解答: 解:∵
i
j

(a
i
+b
j
)
i
=a,(a
i
+b
j
)•
j
=b,
|a
i
+b
j
|
=
a2+b2

∵向量
ai
+
bj
i
j
的夹角分别为α,β,
cosα=
a
a2+b2
cosβ=
b
a2+b2

∴cos2α+cos2β=(
a
a2+b2
)2+(
b
a2+b2
)2
=1.
故答案为:1.
点评:本题考查了向量垂直与数量积的关系、向量的夹角公式等基础知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的长轴长是2
2
,且过点(1,
2
2
).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:y=kx+m(k≠0)与椭圆C交于M,N两点,F为椭圆的右焦点,直线MF与NF关于x轴对称.求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和是Sn,且Sn+
1
2
an=1(n∈N*)
(1)求数列{an}的通项公式;
(2)设bn=log3(1-Sn+1)(n∈N*),求
1
b1b2
+
1
b2b3
+…+
1
b100b101
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=3,an-an-1=(2-n)•2n-1(n≥2,n∈N*).
(1)设cn=an-2n,求cn
(2)记n×(n-1)×…×2×1=n!,求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

有4名同学站成一排,要求甲、乙两名同学必须相邻,有
 
种不同的站法(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,2]和[0,1]分别取一个数,记为x、y,则y≤-x2+2x的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线2x+y-1=0的倾斜角为α,则sin(2α+
π
4
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C:y2=8x的准线与x轴相交于点P,过点P斜率k为正的直线交C于两点A、B,F为C的焦点,若|FA|=2|FB|,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1-x
x-2
的值域为
 

查看答案和解析>>

同步练习册答案