精英家教网 > 高中数学 > 题目详情

已知点P(,1)在双曲线上,且它到双曲线一个焦点F的距离是1,

(1)求双曲线方程;

(2)过F的直线l1交双曲线于AB两点,若弦长|AB|不超过4,求l1的斜率的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年龙岩一中冲刺文)(分)已知双曲线C的中心在原点,焦点在x轴上,右准线为一条渐近线的方程是过双曲线C的右焦点F2的一条弦交双曲线右支于P、Q两点,R是弦PQ的中点.

   (1)求双曲线C的方程;

   (2)若A、B分别是双曲C上两条渐近线上的动点,且2|AB|=|F1F2|,求线段AB的中点M的迹方程,并说明该轨迹是什么曲线。

   (3)若在双曲线右准线L的左侧能作出直线m:x=a,使点R在直线m上的射影S满足,当点P在曲线C上运动时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:数学公式+数学公式=1,(a>b>0)与双曲4x2-数学公式y2=1有相同的焦点,且椭C的离心e=数学公式,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2012年安徽省淮北市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:+=1,(a>b>0)与双曲4x2-y2=1有相同的焦点,且椭C的离心e=,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2012年安徽省淮南市高考数学二模试卷(理科)(解析版) 题型:解答题

已知椭圆C:+=1,(a>b>0)与双曲4x2-y2=1有相同的焦点,且椭C的离心e=,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2012年安徽省淮北市高考数学二模试卷(理科)(解析版) 题型:解答题

已知椭圆C:+=1,(a>b>0)与双曲4x2-y2=1有相同的焦点,且椭C的离心e=,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

同步练习册答案