精英家教网 > 高中数学 > 题目详情
是定义在自然数集上的函数,,且对任意自然数,有,则         
5050

试题分析:令m=1得,∴,∴考点:
点评:当递推式是差的形式,往往利用叠加法求通项公式。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

是连续的偶函数,且当是单调函数,则满足的所有之和为(  )
A.B.      C.      D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分8分) 某车间生产某机器的两种配件A和B,生产配件A成本费y与该车间的工人人数x成反比,而生产配件B成本费y与该车间的工人人数x成正比,如果该车间的工人人数为10人时,这两项费用y和y分别为2万元和8万元,那么要使这两项费用之和最小,该车间的工人人数x应为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程无实数解,则实数的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知函数
⑴若函数的图象过原点,且在原点处的切线斜率是,求的值;
⑵若函数在区间上不单调,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的映射,若对,在A中无原像,则m取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且处取得极值.
(1)求的值;
(2)若当时,恒成立,求的取值范围;
(3)对任意的是否恒成立?如果成立,给出证明,如果不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
函数对任意实数都有,
(Ⅰ)分别求的值;
(Ⅱ)猜想 的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某同学在研究函数 时,分别给出下面几个结论:
①等式恒成立; ②函数的值域为
③若,则一定有;    ④函数上有三个零点。   其中正确结论的序号有____________.

查看答案和解析>>

同步练习册答案