精英家教网 > 高中数学 > 题目详情
在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中点.

(1)求证:B1C∥平面A1BD;
(2)求平面A1DB与平面DBB1夹角的余弦值.
(1)详见解析;(2)平面A1DB与平面DBB1夹角的余弦值为

试题分析:(1)求证:平面;利用线面平行的判定定理,证明线面平行,即证线线平行,可利用三角形的中位线,或平行四边形的对边平行,本题由于的中点,可连接与点,连接,利用三角形中位线的性质,证明线线平行即可;(2)求平面与平面夹角的余弦值,取中点,则平面,则两两垂直,以分别为轴建立空间直角坐标系,写出各点的坐标,求出平面的法向量、平面的法向量,利用向量的夹角公式,即可求解.
试题解析:(1)连接AB1交A1B与点E,连接DE,则B1C∥DE,则B1C∥平面A1BD4分
(2)取A1C1中点F,D为AC中点,则DF⊥平面ABC,
又AB=BC,∴BD⊥AC,∴DF、DC、DB两两垂直,
建立如图所示空间直线坐标系D-xyz,则D(0,0,0), B(0,,0),A1(-1,0,3)

设平面A1BD的一个法向量为,


,则     8分
设平面A1DB与平面DBB1夹角的夹角为θ,平面DBB1的一个法向量为,         10分

∴平面A1DB与平面DBB1夹角的余弦值为.    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是块矩形硬纸板,其中AB=2ADADEDC的中点,将它沿AE折成直二面角D-AE-B.

(1)求证:AD⊥平面BDE
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,已知PB⊥底面ABCDBCABADBCABAD=2,CDPD,异面直线PACD所成角等于60°.

(1)求证:面PCD⊥面PBD
(2)求直线PC和平面PAD所成角的正弦值的大小;
(3)在棱PA上是否存在一点E,使得二面角A-BE-D的余弦值为?若存在,指出点E在棱PA上的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD为矩形,PD⊥平面ABCDPDQAQAADPD.

(1)求证:平面PQC⊥平面DCQ
(2)若二面角Q-BP-C的余弦值为-,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,平面上的点,且.

(1)证明:
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

a
=(1,2,λ),
b
=(1,0,0),
c
=(0,1,0),且
a
b
c
共面,则λ=(  )
A.1B.-1C.0D.±1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。

(I)求棱PB的长;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设点,若点在直线上,且,则点的坐标为 ( )
A.B.C.D.无数多个

查看答案和解析>>

同步练习册答案