精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,已知PB⊥底面ABCDBCABADBCABAD=2,CDPD,异面直线PACD所成角等于60°.

(1)求证:面PCD⊥面PBD
(2)求直线PC和平面PAD所成角的正弦值的大小;
(3)在棱PA上是否存在一点E,使得二面角A-BE-D的余弦值为?若存在,指出点E在棱PA上的位置,若不存在,说明理由.
(1)见解析(2)存在
(1)证明:PB⊥底面ABCD,∴PDCD
又∵CDPDPDPBPPDPB?平面PBD.
CD⊥平面PBD,又CD?平面PCD
∴平面PCD⊥平面PBD.
(2)如图,以B为原点,BABCBP所在直线分别为xyz轴,建立空间直角坐标系,

BCaBPb,则B(0,0,0),A(2,0,0),C(0,a,0),
D(2,2,0),P(0,0,b).
=(2,2,-b),=(2,2-a,0),CDPD
·=0,∴4+4-2a=0,a=4,
=(2,0,-b),=(2,-2,0),
异面直线PACD所成角等于60°,

,解得b=2,
=(0,4,-2),=(0,2,0),=(2,0,-2).
设平面PAD的一个法向量为n1=(x1y1z1),
则由
n1=(1,0,1),
∵sin θ,∴直线PC和平面PAD所成角的正弦值为.
(3)解 假设存在,设λ,且E(xyz),则(xyz-2)=λ(2,0,-2),E(2λ,0,2-2λ),设平面DEB的一个法向量为n2=(x2y2z2),
则由
n2=(λ-1,1-λλ),
又平面ABE的法向量n3=(0,1,0),
由cos θ,得,解得λλ=2(不合题意).
∴存在这样的E点,E为棱PA上的靠近A的三等分点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中点.

(1)求证:B1C∥平面A1BD;
(2)求平面A1DB与平面DBB1夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PAACPAAD=2.四边形ABCD满足BCADABADABBC=1.点EF分别为侧棱PBPC上的点,且λ.

(1)求证:EF∥平面PAD.
(2)当λ时,求异面直线BFCD所成角的余弦值;
(3)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中正确的是(  )
A.若
a
b
b
c
,则
a
c
所在直线平行
B.向量
a
b
c
共面即它们所在直线共面
C.空间任意两个向量共面
D.若
a
b
,则存在唯一的实数λ,使
a
b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦等于(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,ACBC=1,则异面直线A1BAC所成角的余弦值是    (  ).
A.  B.C.  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知正方形的边长为分别是的中点,⊥平面,且,则点到平面的距离为
A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知,线段AB的中点为M,

(1)求证:
(2)求点M的坐标.

查看答案和解析>>

同步练习册答案