精英家教网 > 高中数学 > 题目详情
如图,已知正方形的边长为分别是的中点,⊥平面,且,则点到平面的距离为
A.B.C.D.1
B

试题分析:以C为原点CD为x轴CB为y轴CG为z轴建立空间坐标系,所以平面的一个法向量为
点评:空间向量求解立体几何题目关键是建立合适的坐标系找到相关点的坐标
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,已知PB⊥底面ABCDBCABADBCABAD=2,CDPD,异面直线PACD所成角等于60°.

(1)求证:面PCD⊥面PBD
(2)求直线PC和平面PAD所成角的正弦值的大小;
(3)在棱PA上是否存在一点E,使得二面角A-BE-D的余弦值为?若存在,指出点E在棱PA上的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方形与矩形所在平面互相垂直,,点的中点.

(1)求证:∥平面
(2)求证:
(3)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知多面体中,平面平面的中点

(1)求证:
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直四棱柱中,底面为平行四边形,且的中点.

(1) 证明:∥平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。

(I)求棱PB的长;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面为直角梯形,底面,且的中点。
(1)证明:面
(2)求所成的角;
(3)求面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设平面α与向量a=(-1,2,-4)垂直,平面β与向量b=(-2, 4, -8)垂直,则平面αβ位置关系是______  __.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则向量的夹角为
A.B.C.D.

查看答案和解析>>

同步练习册答案