精英家教网 > 高中数学 > 题目详情
如图,在直四棱柱中,底面为平行四边形,且的中点.

(1) 证明:∥平面
(2)求直线与平面所成角的正弦值.
(1)利用线线平行证明线面平行;(2)

试题分析:(1) 证明:连接
因为,所以,
因为,所以∥面.
(2)作,分别令
轴,轴,轴,建立坐标系如图
因为,所以

所以

设面的法向量为,所以
化简得,令,则.
,则
设直线与面所成角为,则
所以,则直线与面所成角的正弦值为 .
点评:(1)线面关系的证明主要是应用线面平行与垂直的判定定理或性质,具体问题中要是能够根据题意适当做辅助线;(2)空间中角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B = 900,D为棱BB1上一点,且面DA1 C⊥面AA1C1C.求证:D为棱BB1中点;(2)为何值时,二面角A -A1D - C的平面角为600.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦等于(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体的棱长为分别是的中点.

⑴求多面体的体积;
⑵求与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,顶点在底面内的射影恰好落在的中点上,又

(1)求证:
(2)若,求直线所成角的余弦值;
(3)若平面与平面所成的角为,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知正方形的边长为分别是的中点,⊥平面,且,则点到平面的距离为
A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为平行四边形,底面,E在棱上,  (Ⅰ) 当时,求证: 平面;  (Ⅱ) 当二面角的大小为时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


四、附加题:本大题共2小题,每小题10分,共20分。
(20)(本小题满分10分)
已知是边长为1的正方形,分别为上的点,且沿将正方形折成直二面角

(I)求证:平面平面
(II)设与平面间的距离为,试用表示

查看答案和解析>>

同步练习册答案