精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B = 900,D为棱BB1上一点,且面DA1 C⊥面AA1C1C.求证:D为棱BB1中点;(2)为何值时,二面角A -A1D - C的平面角为600.
(1)见解析;(2).

试题分析:(1)过点D作DE ⊥ A1 C 于E点,取AC的中点F,连BF ﹑EF,先证直线DE⊥面AA1C1C,再证BF⊥面AA1C1C,得D,E,F,B共面,再证DB∥EF ,从而有EF∥AA1,易得所证结论;(2)法1:建立空间直角坐标系,找出所需点的坐标,分别设出面DA1C和平面AA1DB的法向量,并列方程计算出来,再利用向量的数量积计算两向量的夹角的余弦值,便可得得值;法2:延长A1 D与直线AB相交于G,易知CB⊥面AA1B1B,过B作BH⊥A1 G于点H,连CH,证明∠CHB为二面角A -A1D - C的平面角,在CHB中,根据条件计算的表达式,可得结论.
试题解析:(1)过点D作DE ⊥ A1 C 于E点,取AC的中点F,连BF ﹑EF.
∵面DA1 C⊥面AA1C1C且相交于A1 C,面DA1 C内的直线DE ⊥ A1 C,∴直线DE⊥面AA1C1C ,3分
又∵面BA C⊥面AA1C1C且相交于AC,易知BF⊥AC,∴BF⊥面AA1C1C
由此知:DE∥BF ,从而有D,E,F,B共面,又易知BB1∥面AA1C1C,故有DB∥EF ,从而有EF∥AA1
又点F是AC的中点,所以DB = EF =  AA1 BB1,所以D点为棱BB1的中点;  6分

(2)解法1:建立如图所示的直角坐标系,设AA1= 2b ,AB=BC = ,则D(0,0,b),  A1 (a,0,2b),  C (0,a,0),                                                  7分
所以, ,                          8分
设面DA1C的法向量为则 可取,
又可取平面AA1DB的法向量,
cos〈,          10分
据题意有:,                               12分
解得:  .                                      13分

解法2:延长A1 D与直线AB相交于G,易知CB⊥面AA1B1B,
过B作BH⊥A1 G于点H,连CH,由三垂线定理知:A1 G⊥CH,
由此知∠CHB为二面角A -A1D - C的平面角;                     9分
设AA1= 2b ,AB=BC =;在直角三角形A1A G中,易知AB = BG.
DBG中,BH =  = ,                    10分
CHB中,tan∠CHB =  =
据题意有: = tan600  ,
解得:所以  .                           13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD.已知ABC=45o,AB=2,BC=2,SA=SB=

(1)证明:SABC;
(2)求直线SD与平面SAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,中点.

(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ)若点的中点,求证:平面
(II)试问点在线段上什么位置时,二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方形与矩形所在平面互相垂直,,点的中点.

(1)求证:∥平面
(2)求证:
(3)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知多面体中,平面平面的中点

(1)求证:
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:四棱锥P—ABCD的底面为直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,侧面PAD与底面垂直,PA=PD,点M为侧棱PC上一点.

(1)若PA=AD,求PB与平面PAD的所成角大小;
(2)问多大时,AM⊥平面PDB可能成立?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直四棱柱中,底面为平行四边形,且的中点.

(1) 证明:∥平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体的棱长为1,点在侧面及其边界上运动,并且总保持平行平面,则动点P的轨迹的长度是 _______     
          

查看答案和解析>>

同步练习册答案