精英家教网 > 高中数学 > 题目详情
已知,则向量的夹角为
A.B.C.D.
C
主要是考查了空间向量的夹角运用,利用数量积公式得到即可。属于基础题型。
因为

故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分) 如图,在三棱锥中,,点分别是的中点,底面
(1)求证:平面
(2)当时,求直线与平面所成角的正弦值;
(3)当为何值时,在平面内的射影恰好为的重心.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知的直径AB=3,点C为上异于A,B的一点,平面ABC,且VC=2,点M为线段VB的中点.
(1)求证:平面VAC;
(2)若AC=1,求二面角M-VA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知正方形的边长为分别是的中点,⊥平面,且,则点到平面的距离为
A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是边长为的正方形ABCD的中心,点E、F分别是AD、BC的中点,沿对角线AC把正方形ABCD折成直二面角D-AC-B;
(Ⅰ)求∠EOF的大小;
(Ⅱ)求二面角E-OF-A的余弦值;
(Ⅲ)求点D到面EOF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
如图2,在四面体中,
(1)设的中点,证明:在上存在一点,使,并计算的值;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


四、附加题:本大题共2小题,每小题10分,共20分。
(20)(本小题满分10分)
已知是边长为1的正方形,分别为上的点,且沿将正方形折成直二面角

(I)求证:平面平面
(II)设与平面间的距离为,试用表示

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是平面内的三点,设向量,且,则________________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四组向量中,互相平行的是(     ).
(1) ,;       (2) ,
(3),;  (4),
A.(1) (2)B.(2) (3)C. (2) (4)D.(1) (3)

查看答案和解析>>

同步练习册答案