精英家教网 > 高中数学 > 题目详情
(本小题14分)
如图2,在四面体中,
(1)设的中点,证明:在上存在一点,使,并计算的值;
(2)求二面角的平面角的余弦值.
解法一:(1)在平面内作,连接.…………1分

 又, 
  ,  。        

的中点,则         …………4分
在等腰中,, 
中,  ……4分
中,,   …5分
                       …………8分
(2)连接
知:.

又由.
,
的中点,
,
,,

为二面角的平面角                …………10分
在等腰中,
中,
中, .           …………12分
                     …………14分

解法二:在平面中,过点,作,取为坐标原点,分别以,所在的直线为轴,轴,轴,建立空间直角坐标系 (如图所示)       …………1分

中点,      …………2分
 .

 即.      …………6分
所以存在点 使得 且.      …………8分
(2)记平面的法向量为,则由,且
, 故可取          …………10分
又平面的法向量为.                    …………11分
.                    …………13分
二面角的平面角是锐角,记为,则 …………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。

(I)求棱PB的长;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面的法向量,平面的法向量,若,则k的值为
A.5B.4
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知棱长为1的正方体ABCD-A1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF∥平面B1MC

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点;

(1)求
(2)求
(3)
(4)求CB1与平面A1ABB1所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则向量的夹角为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直三棱柱中,底面是等腰直角三角形,,侧棱,D,E分别是的中点,点E在平面ABD上的射影是的重心G.则与平面ABD所成角的余弦值     (   )
      
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知空间三点A(1,3,2),B(1,2,1),C(-1,2,3),则下列向量中是平面ABC的法向量的为(  )
A.(-1,-2,5)B.(1,3,2)C.(1,1,1)D.(-1,1,-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知l∥,且l的方向向量为(2, m, 1), 平面的法向量为(1,, 2), 则m=       .

查看答案和解析>>

同步练习册答案