分析 通过(n2+3n)an+1=(n2+3n+2)an变形、可知$\frac{\frac{{a}_{n+1}}{n+1}}{\frac{{a}_{n}}{n}}$=$\frac{n+2}{n+3}$,利用累乘法计算即得结论.
解答 解:∵(n2+3n)an+1=(n2+3n+2)an,
∴$\frac{\frac{{a}_{n+1}}{n+1}}{\frac{{a}_{n}}{n}}$=$\frac{n+2}{n+3}$,
∴$\frac{\frac{{a}_{n}}{n}}{\frac{{a}_{n-1}}{n-1}}$=$\frac{n+1}{n+2}$,
$\frac{\frac{{a}_{n-1}}{n-1}}{\frac{{a}_{n-2}}{n-2}}$=$\frac{n}{n+1}$,
…
$\frac{\frac{{a}_{2}}{2}}{\frac{{a}_{1}}{1}}$=$\frac{3}{4}$,
累乘得:$\frac{\frac{{a}_{n}}{n}}{\frac{{a}_{1}}{1}}$=$\frac{3}{n+2}$,
又∵a1=5,
∴$\frac{{a}_{n}}{n}$=$\frac{15}{n+2}$,
∴an=$\frac{15n}{n+2}$,
故答案为:$\frac{15n}{n+2}$.
点评 本题考查数列的通项,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com