精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1+a2+…+an=n2(n∈N*),
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对任意给定的k∈N*,是否存在p,r∈N*(k<p<r),使成等差数列?若存在,用k分别表示p和r(只要写出一组);若不存在,请说明理由;
(Ⅲ)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为
解:(Ⅰ)当n=1时,a1=1;
当n≥2,n∈N*时,a1+a2+…+an-1=(n-1)2
所以an=n2-(n-1)2=2n-1;
综上所述,an=2n-1(n∈N*)。
(Ⅱ)当k=1时,若存在p,r使成等差数列,

因为p≥2,所以ar<0,与数列{an}为正数相矛盾,
因此,当k=1时不存在;
当k≥2时,设ak=x,ap=y,ar=z,则
所以
令y=2x-1,得z=xy=x(2x-1),
此时ak=x=2k-1,ap=y=2x-1=2(2k-1)-1,
所以p=2k-1,ar=z=(2k-1)(4k-3)=2(4k2-5k+2)-1,
所以r=4k2-5k+2;
综上所述,当k=1时,不存在p,r;
当k≥2时,存在p=2k-1,r=4k2-5k+2满足题设;
(Ⅲ)作如下构造:,其中k∈N*,
它们依次为数列{an}中的第2k2+6k+5项,第2k2+8k+8项,第2k2+10k+13项,
显然它们成等比数列,且
所以它们能组成三角形,
由k∈N*的任意性,这样的三角形有无穷多个。
下面用反证法证明其中任意两个三角形A1B1C1和A2B2C2(k1≠k2)不相似;
若三角形A1B1C1和A2B2C2相似,

整理得,所以k1=k2
这与条件k1≠k2相矛盾,
因此,任意两个三角形不相似;
故命题成立。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案