精英家教网 > 高中数学 > 题目详情
7.已知sinA:sinB:sinC=2:3:5,则a:b:c=2:3:5.

分析 由正弦定理可得sinA=$\frac{a}{2R}$,sinB=$\frac{b}{2R}$,sinC=$\frac{c}{2R}$,从而可把三个角正弦的比值转化为三边的比值,即可得解.

解答 解:∵由正弦定理可得:sinA=$\frac{a}{2R}$,sinB=$\frac{b}{2R}$,sinC=$\frac{c}{2R}$,
∴sinA:sinB:sinC
=$\frac{a}{2R}$:$\frac{b}{2R}$:$\frac{c}{2R}$
=a:b:c
=2:3:5,
故答案为:2:3:5.

点评 本题给出三角形三个角正弦的比值,求三边的比值,着重考查了利用正弦定理解三角形的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=lgx+2x-4的零点在区间(n,n+1)内,则整数n的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某单位有职工120人,男职工有90人,现采用分层抽样(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为36.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x≥0,x2+(y-6)2≤9,则$\frac{2{x}^{2}+\sqrt{3}xy+{y}^{2}}{{x}^{2}+{y}^{2}}$的取值范围为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果执行如图的程序框图,那么输出的S是 (  )
A.2548B.2550C.-2550D.-2552

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.化在直角坐标方程x2+y2-8y=0为极坐标方程ρ=8sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(x-2,-2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$-$\overrightarrow{b}$等于(  )
A.(-2,-1)B.(-2,1)C.(2,-1)D.(2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知复数Z=lg(m2-2m-3)+(m2+3m+2)i,实数m取何值时,
(1)$\overline Z=Z$;    
(2)z为虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若sinA:sinB:sinC=2:3:4,则△ABC是(  )
A.直角三角形B.锐角三角形C.钝角三角形D.不能确定

查看答案和解析>>

同步练习册答案