精英家教网 > 高中数学 > 题目详情
抛物线y2=2px(p>0)上一点M到焦点F的距离等于6的坐标是
 
考点:抛物线的标准方程,抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:先求出抛物线的准线,再由M到焦点的距离等于其到准线的距离,从而可确定M的横坐标,代入抛物线方程可确定纵坐标,从而可确定答案.
解答: 解:∵抛物线y2=2px的准线为:x=-
p
2

抛物线y2=2px上一点M到焦点F的距离是6,∴P到x=-
p
2
的距离等于6,
设M(x,y)∴x=6-
p
2

代入到抛物线中得到y=±
12p-p2

∴M(
12-p
2
±
12p-p2
).
故答案为(
12-p
2
±
12p-p2
).
点评:本题主要考查抛物线的简单性质--抛物线上的点是到焦点的距离等于到准线的距离的集合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若数列{an}满足:a1=
2
3
,a2=2,3(an+1-2an+an-1)=2,
(1)证明:数列{an+1-an}是等差数列;
(2)求使
1
a1
+
1
a2
+
1
a3
+…+
1
an
5
2
成立的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正六棱柱的高为6,底面边长为3,则它的体积为(  )
A、48
B、27
3
C、81
3
D、36

查看答案和解析>>

科目:高中数学 来源: 题型:

若平面直角坐标系内两点M、N满足条件:①M、N都在函数y=f(x)的图象上;②M、N关于原点对称,则称点对(M、N)是函数y=f(x)的一个“共生点对”(点对(M、N)与(N、M)可看作同一个“共生点对”),已知函数f(x)=
x2-4x+5x≥0
-2ln(-x)x<0
则此函数的“共生点对”有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题:
①{an}成等差数列,且m,n,p,r∈N*,则“m+n=p+r”是“am+an=ap+aq”的充要条件;
②“{lgan}成等差数列”是“{an}成等比数列”的充分不必要条件;
③a,b,c∈R,则“b=
ac
”是“a,b,c成等比数列”的既不充分也不必要条件;
④若{an}成等比数列,则a1+a2+a3+a4•a5+a6+a7+a8•a9+a10+a11+a12也成等比数列;
其中所有真命题的番号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)为∠α终边上一点.
(1)若∠α是第二象限角,且y=
5
,且cosα=
2
4
,求x的值;
(2)若x=y,求sinα+2cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知3个数成等差数列,和为12,若第3个数加上2后,此3个数成等比数列,若由这三个数构成的等差数列是递增的,求这个数列的前n项之和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盛满水的三棱锥容器S-ABC中,不久发现三条侧棱上各有一个小洞D,E,F,且知SD:DA=SE:EB=CF:FS=2:1,若仍用这个容器盛水,则最多可盛原来水的(  )
A、
23
29
B、
19
27
C、
30
31
D、
23
27

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个正实数x,y满足
2
x
+
1
y
=1,并且x+2y≥m2-2m恒成立,则实数m的取值范围是(  )
A、(-2,4)
B、[-2,4]
C、(-∞,-2)∪(4,+∞)
D、(-∞,-2]∪[4,+∞)

查看答案和解析>>

同步练习册答案