精英家教网 > 高中数学 > 题目详情
如图,点F是椭圆W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点,A、B分别是椭圆的右顶点与上顶点,椭圆的离心率为
1
2
,三角形ABF的面积为
3
3
2

(Ⅰ)求椭圆W的方程;
(Ⅱ)对于x轴上的点P(t,0),椭圆W上存在点Q,使得PQ⊥AQ,求实数t的取值范围;
(Ⅲ)直线l:y=kx+m(k≠0)与椭圆W交于不同的两点M、N(M、N异于椭圆的左右顶点),若以MN为直径的圆过椭圆W的右顶点A,求证:直线l过定点,并求出该定点的坐标.
(Ⅰ)由e=
c
a
=
1
2
,即a=2c,得b=
a2-c2
=
3
c

S△ABF=
1
2
(a+c)•b=
3
3
2
c2=
3
3
2
,解得c2=1,∴a2=4c2=4,b2=a2-c2=3,
∴椭圆W的方程为
x2
4
+
y2
3
=1
;…(3分)
(Ⅱ)A(2,0),P(t,0),设Q(x,y),则
x2
4
+
y2
3
=1
PQ
=(x-t,y)
AQ
=(x-2,y)

PQ
AQ
,∴(x-t)(x-2)+y2=0,∴(x-t)(x-2)+3(1-
x2
4
)=0
,…(5分)
∵-2<x<2,∴x-t-
3(2+x)
4
=0
,即t=
x-6
4
∈(-2,-1)
;…(7分)
(Ⅲ)证明:联立
y=kx+m
3x2+4y2=12
消y得:(3+4k2)x2+8kmx+4m2-12=0,
设M(x1,y1),N(x2,y2),△=(8km)2-4(3+4k2)(4m2-12)>0,即m2<3+4k2x1+x2=-
8km
3+4k2
x1x2=
4m2-12
3+4k2
,…(9分)
AM
=(x1-2,y1),
AN
=(x2-2,y2)

若以MN为直径的圆过椭圆W的右顶点A,则
AM
AN
=(x1-2)(x2-2)+y1y2=0

即(x1-2)(x2-2)+(kx1+m)(kx2+m)=0,…(11分)
展开整理得:x1x2-2(x1+x2)+4+k2x1x2+km(x1+x2)+m2=0
4m2-12
3+4k2
-2(-
8km
3+4k2
)+4+k2(
4m2-12
3+4k2
)+km(-
8km
3+4k2
)+m2=0

通分化简得
7m2+16km+4k2
3+4k2
=0
,即7m2+16km+4k2=0,
分解得(7m+2k)(m+2k)=0,得7m+2k=0或m+2k=0,即m=-
2k
7
或m=-2k,
m=-
2k
7
时,直线y=kx+m=k(x-
2
7
)
,即直线过定点(
2
7
,0)

当m=-2k时,直线y=kx+m=k(x-2),即直线过定点(2,0),但与右顶点A重合,舍去,
综合知:直线l过定点,该定点的坐标为(
2
7
,0)
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

直线y=kx与双曲线
x2
a2
-
y2
b2
=1
的左右两支都有交点的充要条件是k∈(-1,1),且该双曲线与直线y=
1
2
x-
3
2
相交所得弦长为
4
15
3
,则该双曲线方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点F1的坐标为(-1,0),已知椭圆E上的一点到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的右焦点F2作一条倾斜角为
π
4
的直线交椭圆于C、D,求△CDF1的面积;
(Ⅲ)设点P(4,t)(t≠0),A、B分别是椭圆的左、右顶点,若直线AP、BP分别与椭圆相交异于A、B的点M、N,求证∠MBP为锐角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
5
2
3

(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.
①若线段AB中点的横坐标为-
1
2
,求斜率k的值;
②已知点M(-
7
3
,0)
,求证:
MA
MB
为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,焦点在x轴上,长轴长等于12,离心率为
1
3

(Ⅰ)求椭圆的标准方程;
(Ⅱ)在椭圆上任取一点P,过P点做y轴垂线段PQ,Q为垂足,当P在椭圆上运动时,求线段PQ的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线x=ky+3与双曲线
x2
9
-
y2
4
=1
只有一个公共点,则k的值有(  )
A.1个B.2个C.3个D.无数多个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A,B分别为椭圆
x2
a2
+
y2
b2
=1(a,b>0)
的左、右顶点,椭圆长半轴的长等于焦距,且x=4为它的右准线.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为右准线上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,证明点B在以MN为直径的圆内.
(此题不要求在答题卡上画图)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线x2=2py(p>0)的焦点为F,顶点为O,准线为l,过该抛物线上异于顶点O的任意一点A作AA1⊥l于点A1,以线段AF,AA1为邻边作平行四边形AFCA1,连接直线AC交l于点D,延长AF交抛物线于另一点B.若△AOB的面积为S△AOB,△ABD的面积为S△ABD,则
(S△AOB)2
S△ABD
的最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xoy中,如图,已知椭圆
x2
9
+
y2
5
=1
的左、右顶点为A、B,右焦点为F,设过点T(t,m)的直线TA、TB与此椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0
(1)设动点P满足(
PF
+
PB
)(
PF
-
PB
)=13
,求点P的轨迹方程;
(2)设x1=2,x2=
1
3
,求点T的坐标;
(3)若点T在点P的轨迹上运动,问直线MN是否经过x轴上的一定点,若是,求出定点的坐标;若不是,说明理由.

查看答案和解析>>

同步练习册答案