精英家教网 > 高中数学 > 题目详情
已知抛物线x2=2py(p>0)的焦点为F,顶点为O,准线为l,过该抛物线上异于顶点O的任意一点A作AA1⊥l于点A1,以线段AF,AA1为邻边作平行四边形AFCA1,连接直线AC交l于点D,延长AF交抛物线于另一点B.若△AOB的面积为S△AOB,△ABD的面积为S△ABD,则
(S△AOB)2
S△ABD
的最大值为______.
由题意,
(S△AOB)2
S△ABD
的最大值,一定在特殊位置取得,即AB⊥x轴,
此时S△AOB=
1
2
p
2
•2p
=
1
2
p2
S△ABD=
1
2
•p•2p
=p2
(S△AOB)2
S△ABD
的最大值为
1
4
p4
p2
=
p2
4

故答案为:
p2
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为:
x2
a2
+
y2
b2
=1(a>b>0)
,其中a2=4c,直线l:3x-2y=0与椭圆的交点在x轴上的射影恰为椭圆的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆在x轴上方的一个交点为P,F是椭圆的右焦点,试探究以PF为直径的圆与以椭圆长轴为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点F是椭圆W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点,A、B分别是椭圆的右顶点与上顶点,椭圆的离心率为
1
2
,三角形ABF的面积为
3
3
2

(Ⅰ)求椭圆W的方程;
(Ⅱ)对于x轴上的点P(t,0),椭圆W上存在点Q,使得PQ⊥AQ,求实数t的取值范围;
(Ⅲ)直线l:y=kx+m(k≠0)与椭圆W交于不同的两点M、N(M、N异于椭圆的左右顶点),若以MN为直径的圆过椭圆W的右顶点A,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
16
+
y2
9
=1
的左、右焦点分别为F1、F2,过焦点F1的直线交椭圆于A,B两点,若△ABF2的内切圆的面积为π.A,B两点的坐标分别为(x1,y1)和(x2,y2),则|y2-y1|的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆
x2
4
+
y2
a2
=1与双曲线
x2
a
-
y2
2
=1有相同的焦点,则a的值是(  )
A.1B.-1C.±1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的顶点在原点,经过点A(1,2),其焦点F在y轴上,直线y=kx+2交抛物线C于A,B两点,M是线段AB的中点,过M作x轴的垂线交抛物线C于点N.
(Ⅰ)求抛物线C的方程;
(Ⅱ)证明:抛物线C在点N处的切线与AB平行.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线C1:y2=8x与双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)
有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且|AF2|=5.
(Ⅰ)求双曲线C2的方程;
(Ⅱ)以F1为圆心的圆M与双曲线的一条渐近线相切,圆N:(x-2)2+y2=1.平面上有点P满足:存在过点P的无穷多对互相垂直的直线l1,l2,它们分别与圆M,N相交,且直线l1被圆M截得的弦长与直线l2被圆N截得的弦长的比为
3
:1
,试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线与椭圆
x2
9
+
y2
4
=1
交于A,B两点,设线段AB的中点为P,若直线的斜率为k1,直线OP的斜率为k2,则k1k2等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一束光线从点(0,1)出发,经过直线x+y-2=0反射后,恰好与椭圆x2+
y2
2
=1
相切,则反射光线所在的直线方程为______.

查看答案和解析>>

同步练习册答案