精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)若f(a)=4,求a的值;
(Ⅲ)判断并证明该函数的单调性.

解:(Ⅰ)对于函数,有
解可得x<-5或x>5.
所以f(x)的定义域为(-∞,-5)∪(5,+∞);
(Ⅱ)f(a)=log2=4,
=16,
解可得,a=-
(Ⅲ)f(x)在(5,+∞)和(-∞,-5)上是单调递增的.
证明:由(Ⅰ)可得,函数的定义域为(-∞,-5)∪(5,+∞),关于原点对称;
又有
则f(x)为奇函数,
任取x1,x2∈(5,+∞),且x1<x2,则△x=x2-x1>0,
f(x2)-f(x1)=log2-log2=log2÷)=log2
∵△x=x2-x1>0,∴x1x2-25+5△x>x1x2-25-5△x


即f(x2)-f(x1)>0
由此证得f(x)在(5,+∞)上是单调递增的,
又∵f(x)是奇函数,
∴f(x)在(-∞,-5)上也是单调递增的.
∴f(x)在(5,+∞)和(-∞,-5)上是单调递增的.
分析:(Ⅰ)对于函数,有,解可得答案;
(Ⅱ)根据题意,有f(a)=log2=4,变形可得=16,解可得答案;
(Ⅲ)首先分析函数的奇偶性,可得f(x)为奇函数,任取x1,x2∈(5,+∞),且x1<x2,则△x=x2-x1>0,用作差法证明可得f(x)在(5,+∞)上是单调递增的,结合函数的奇偶性可得f(x)在(-∞,-5)上也是单调递增的,综合可得答案.
点评:本题考查综合考查函数的奇偶性与单调性,解(Ⅲ)时,由于所求函数的定义域不连续,要先分析证明一半定义域中的单调性,再利用函数的奇偶性的性质,分析剩余区间的单调性,进而综合考虑可得整体的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象和y轴交于(0,1)且y轴右侧的第一个最大值、最小值点分别为P(x0,2)和Q(x0+3π,-2).
(1)求函数y=f(x)的解析式及x0
(2)求函数y=f(x)的单调递减区间;
(3)如果将y=f(x)图象上所有点的横坐标缩短到原来的
1
3
(纵坐标不变),然后再将所得图象沿x轴负方向平移
π
3
个单位,最后将y=f(x)图象上所有点的纵坐标缩短到原来的
1
2
(横坐标不变)得到函数y=g(x)的图象,写出函数y=g(x)的解析式并给出y=|g(x)|的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(3x+φ) ( A>0,x∈(-∞,+∞),0<φ<π ) 在x=
π
12
时取得最大值4.
(1)求函数f(x)的最小正周期及解析式;
(2)求函数f(x)的单调增区间;
(3)求函数f(x)在[0,
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+
3
sin2x
(1)求函数f(x)的单调增区间;
(2)当 x∈[0,
π
4
]时,求函数f(x)的值域;
(3)若将该函数图象向左平移
π
4
个单位长度,得到函数y=g(x)的图象,求函数y=g(x)的对称中心.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省仙桃一中高三(上)第二次段考数学试卷(文科)(解析版) 题型:解答题

已知函数
(1)求函数f(x)的最小正周期和最小值;
(2)在给出的直角坐标系中,用描点法画出函数y=f(x)在区间[0,π]上的图象.

查看答案和解析>>

同步练习册答案