精英家教网 > 高中数学 > 题目详情
17.设x0是方程2x+x-8=0的解,且x0∈(k,k+1),k∈Z,则k=2.

分析 先设出对应函数,把方程的根转化为对应函数的零点,再计算区间端点值,看何时一正一负即可求出结论.

解答 解:方程2x+x-8=0的解就是函数f(x)=2x+x-8的零点,
可知f(x)=2x+x-8在R上单调递增,
又∵f(1)=-5<0,f(2)=-2<0,f(3)=3>0,
∴f(2)f(3)<0,
又∵f(x)在R上连续,
根据零点存在定理,
∴f(x)在(2,3)上有零点,
故k=2,
故答案为:2.

点评 本题考查用二分法求区间根的问题以及函数思想和方程思想的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,已知直线$l:ρsin(θ+\frac{π}{4})=2$与圆O:ρ=4.
(1)分别求出直线l与圆O对应的直角坐标系中的方程;
(2)求直线l被圆O所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求使方程3cosθ-4ksinθ-2+3k=0有解时,k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=k-|x-3|,k∈R且f(x+3)≥0的解集为[-1,1]
(Ⅰ)求k的值;
(Ⅱ)若a,b,c是正实数,且$\frac{1}{ka}$+$\frac{1}{2kb}$+$\frac{1}{3kc}$=1,证明:a+2b+3c≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.下列哪一组中的函数f(x)与g(x)相等?
(1)f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1;
(2)f(x)=x2,g(x)=($\sqrt{x}$)4
(3)f(x)=x2,g(x)=$\root{3}{{x}^{6}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A,B,C所对边长分别为a,b,c,若a=3,B=$\frac{π}{6}$,cosA=$\frac{{\sqrt{7}}}{4}$,则b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(4,4),则$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{△x}$=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“若x∈[1,+∞),则有x+$\frac{1}{x}$≥2成立”的逆命题、否命题、逆否命题中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.用反证法证明“凸四边形的四个内角中至少有一个不小于90°”时,首先要作出的假设是(  )
A.四个内角都大于90°B.四个内角中有一个大于90°
C.四个内角都小于90°D.四个内角中有一个小于90°

查看答案和解析>>

同步练习册答案