精英家教网 > 高中数学 > 题目详情
求一条渐近线方程是3x+4y=0,一个焦点是(4,0)的双曲线标准方程,并求此双曲线的离心率.
分析:先由双曲线的渐近线方程为y=±
b
a
x,易得
b
a
,再由焦点为(4,0)可得双曲线中c=4,最后根据双曲线的性质c2=a2+b2列方程组,解得a2、b2即可.
解答:解:设双曲线方程为:9x2-16y2=λ,∵双曲线有一个焦点为(4,0),∴λ>0
双曲线方程化为:
x2
λ
9
-
y2
λ
16
=1?
λ
9
+
λ
16
=16?λ=
482
25

∴双曲线方程为:
x2
256
25
-
y2
144
25
=1

e=
4
16
5
=
5
4
点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的一条渐近线方程是x-2y=0,且过点P(4,3),求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求离心率e=
6
3
,且过点(3,0),焦点在y轴上的椭圆的标准方程.
(2)双曲线C与4x2+y2=1有相同的焦点,它的一条渐近线方程是y=
2
x
,求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C是中心在原点,焦点在x轴上的双曲线的右支,已知它的右准线方程为l:x=
1
2
,一条渐近线方程是y=
3
x
,线段PQ是过曲线C右焦点F的一条弦,R是弦PQ的中点.
(1)求曲线C的方程;
(2)当点P在曲线C上运动时,求点R到y轴距离的最小值;
(3)若在直线l的左侧能作出直线m:x=a,使点R在直线m上的射影S满足
PS
QS
=0.当点P在曲线C上运动时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的曲线的标准方程:
(1)a=6,c=3,焦点在y轴上的椭圆
(2)过点M(
2
,1)
,且焦点为F1(-
2
,0)
的椭圆
(3)一条渐近线方程是3x+4y=0,一个焦点是(5,0)的双曲线.

查看答案和解析>>

科目:高中数学 来源:海南省琼海市嘉积中学2011-2012学年高二上学期教学质量监测(二)数学理科试题 题型:044

求一条渐近线方程是3x+4y=0,且过点(,3)的双曲线的标准方程,并求此双曲线的离心率.

查看答案和解析>>

同步练习册答案