【题目】如图,四棱柱的底面为菱形,底面,,,,分别为,的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面平面;
(Ⅲ)若,求异面直线与所成角的余弦值.
【答案】(Ⅰ)见证明;(Ⅱ)见证明;(Ⅲ)
【解析】
(Ⅰ)证明平面,可证与平面内的直线平行,则取的中点,连接,即可。
(Ⅱ)证明平面平面,可证平面,又因为平面,所以平面平面.
(Ⅲ)由(I)知,,则(或其补角)是异面直线与所成的角.在中,分别求出,,,通过余弦定理可求得与所成角的余弦值。
(Ⅰ)取的中点,连接,,
∵,,,,
∴,.
∴四边形是平行四边形.
∴.
又平面,平面,
∴平面.
(Ⅱ)在菱形中,
∵, ∴,∴是等边三角形.
∴.∴.
又平面, ∴.
又 ,∴平面.
∴平面
∴平面平面.
(Ⅲ)由(I)知,,
则(或其补角)是异面直线与所成的角.
在中,∵,,,
∴.
∴异面直线与所成角的余弦值为.
科目:高中数学 来源: 题型:
【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;
(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:
车型 报废年限 | 1年 | 2年 | 3年 | 4年 | 总计 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?
参考数据:,,,.
参考公式:相关系数,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名大学生因为学习需要,欲各自选购一台笔记本电脑,他们决定在A,B,C三个品牌的五款产品中选择,这五款笔记本电脑在某电商平台的价格与销量数据如表所示:
品牌 | A | B | C | ||
型号 | A﹣1 | A﹣2 | B﹣1 | B﹣2 | C﹣1 |
价格(元) | 6000 | 7500 | 10000 | 8000 | 4500 |
销量(台) | 1000 | 1000 | 200 | 800 | 3000 |
(Ⅰ)若甲选择某品牌的笔记本电脑的概率与该品牌的总销量成正比,求他选择B品牌的笔记本电脑的概率;
(Ⅱ)若甲、乙两人选择每种型号的笔记本电脑的概率都相等,且两人选购的型号不相同,求他们两人购买的笔记本电脑的价格之和大于15000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:①若线性回归方程为,则当变量增加一个单位时,一定增加3个单位;②将一组数据中的每个数据都加上同一个常数后,方差不会改变;③线性回归直线方程必过点;④抽签法属于简单随机抽样;其中错误的说法是( )
A.①③B.②③④C.①D.①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子中装有4个编号依次为1、2、3、4的球,这4个球除号码外完全相同,先从盒子中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为.
(Ⅰ)列出所有可能结果;
(Ⅱ)求事件“取出球的号码之和小于4”及事件 “编号”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举行,吸引过来58个“一带一路”沿线国家的超过1000多家企业参展,成为共建“一带一路”的又一个重要支撑。某企业为了参加这次盛会,提升行业竞争力,加大了科技投入;该企业连续6年来得科技投入(百万元)与收益(百万元)的数据统计如下:
根据散点图的特点,甲认为样本点分布在指数曲线的周围,据此他对数据进行了一些初步处理,如下表:
其中,.
(1)()请根据表中数据,建立关于的回归方程(保留一位小数);
()根据所建立回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中)?
(2)乙认为样本点分布在二次曲线的周围,并计算得回归方程为,以及该回归模型的相关指数,试比较甲乙两位员工所建立的模型,谁的拟合效果更好.
附:对于一组数据,,……,其回归直线方程的斜率和截距的最小二乘估计分别为,,相关指数:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高二理科8班共有50名学生参加学业水平模拟考试,成绩(单位:分,满分100分)大于或等于90分的为优秀,其中语文成绩近似服从正态分布,数学成绩的频率分布直方图如图.
(I)这50名学生中本次考试语文、数学成绩优秀的大约各有多少人?
(Ⅱ)如果语文和数学两科成绩都优秀的共有4人,从语文优秀或数学优秀的这些同学中随机抽取3人,设3人中两科都优秀的有人,求的分布列和数学期望;
(Ⅲ)根据(I)(Ⅱ)的数据,是否有99%以上的把握认为语文成绩优秀的同学,数学成绩也优秀?
附:①若~,则,;
②;
③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,四边形是菱形,,,且交于点,是上任意一点.
(1)求证;
(2)已知二面角的余弦值为,若为的中点,求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),以该直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)分别求曲线的极坐标方程和曲线的直角坐标方程;
(Ⅱ)设直线交曲线于,两点,交曲线于,两点,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com