精英家教网 > 高中数学 > 题目详情
命题p:关于x的不等式x2+2ax+4>0对于一切x∈R恒成立,命题q:?x∈[1,2],x2-a≥0,若p∨q为真,p∧q为假.求实数a的取值范围.
分析:根据二次函数的图象和性质我们可以求出命题p:关于x的不等式x2+2ax+4>0对于一切x∈R恒成立时,及命题q:?x∈[1,2],x2-a≥0时,a的取值范围,根据p∨q为真,p∧q为假,结合复合命题的真值表,可得p、q一真一假,分类讨论后可得实数a的取值范围.
解答:解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对于一切x∈R恒成立,
所以函数g(x)的图象开口向上且与x轴没有交点,
故△=4a2-16<0,
∴-2<a<2.…(2分)
若q为真命题,a≤x2恒成立,即a≤1.…(4分)
由于p或q为真,p且q为假,可知p、q一真一假.…(5分)
①若p真q假,则
-2<a<2
a>1

∴1<a<2;…(7分)
②若p假q真,则
a≤-2
a<1

∴a≤-2;…(9分)
综上可知,所求实数a的取值范围是{a|1<a<2或a≤-2}…(10分)
点评:本题以复合命题的真假判断为载体考查了二次不等式恒成立问题,其中根据二次函数的图象和性质,分别求出对应的a值,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2+mx+
1
2
=0
有两个不等的负根;命题q:函数f(x)=lg[(1-
1
m
)x2+2(m-1)x+m]
的定义域为R.
(1)若命题p、q都是真命题时m的取值范围分别是集合A和集合B,求集合A和集合B;
(2)若命题“(?p)∨(?q)”是假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题P:关于x的方程mx2-(1-m)x+m=0没有实数解;命题Q:关于x的方程x2-(m+3)x+m+3=0有两个不等正实数根;若命题P且命题非Q为真,求m值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:关于x的不等2x<a的解集为∅;命题q:函数y=lg(ax2-x+a)的定义域是R.若“p∨q”为真,“p∧q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题P:关于x的不等2x<a的解集为∅;命题q:函数y=lg(ax2-x+a)的定义域是R.若“p∨q”为真,“p∧q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省无锡一中高二(上)期中数学试卷(成志班)(解析版) 题型:解答题

设命题P:关于x的不等2x<a的解集为∅;命题q:函数y=lg(ax2-x+a)的定义域是R.若“p∨q”为真,“p∧q”为假,求a的取值范围.

查看答案和解析>>

同步练习册答案