¾«Ó¢¼Ò½ÌÍøÈçͼËùʾ£¬ÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÁ½¸ö½¹µãΪF1¡¢F2£¬¶ÌÖáÁ½¸ö¶ËµãΪA¡¢B£®ÒÑÖª|
OB
|
¡¢|
F1B
|
¡¢
|F1F2
|
³ÉµÈ±ÈÊýÁУ¬|
F1B
|
-
|F1F2
|
=2£¬ÓëxÖá²»´¹Ö±µÄÖ±ÏßlÓëC½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬¼ÇÖ±ÏßAM¡¢ANµÄбÂÊ·Ö±ðΪk1¡¢k2£¬ÇÒk1•k2=
3
2
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÇóÖ¤Ö±ÏßlÓëyÖáÏཻÓÚ¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£»
£¨¢ó£©µ±ÏÒMNµÄÖеãPÂäÔÚËıßÐÎF1AF2BÄÚ£¨°üÀ¨±ß½ç£©Ê±£¬ÇóÖ±ÏßlµÄбÂʵÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨¢ñ£©¸ù¾ÝÌâÒâ¿ÉÖª
|OB|
ºÍ
|F1B|
£¬Í¨¹ý|
OB
|
¡¢|
F1B
|
¡¢
|F1F2
|
³ÉµÈ±ÈÊýÁÐÍƶϳöa2=2bc£¬½ø¶ø¸ù¾Ýa£¬bºÍcµÄ¹ØϵÇóµÃaºÍbµÄ¹Øϵ£¬ÀûÓÃ
F1B•
F1F2
=2
ÇóµÃb£¬Ôòa¿ÉÇó£¬ÍÖÔ²µÄ·½³Ì¿ÉµÃ£®
£¨¢ò£©Éè³öÖ±ÏßlµÄ·½³Ì£¬ºÍM£¬NµÄ×ø±ê£¬°ÑÖ±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí±íʾ³öx1+x2ºÍx1x2£¬½ø¶øÀûÓÃk1•k2=
3
2
ÇóµÃb£¬½ø¶ø¿ÉÇóµÃÖ±ÏßlÓëyÖáÏཻµÄµã£®
£¨III£©ÓÉ£¨¢ò£©ÖеÄÒ»Ôª¶þ´Î·½³Ì¿ÉÇóµÃÅбðʽ´óÓÚ0ÇóµÃkµÄ·¶Î§£¬ÉèÏÒABµÄÖеãP×ø±êÔò¿É·Ö±ð±íʾ³öx0ºÍy0£¬pµãÔÚxÖáÉÏ·½£¬Ö»ÐèλÓÚÈý½ÇÐÎMF1F2ÄھͿÉÒÔ£¬½ø¶øÁªÁ¢²»µÈʽ×飬ÇóµÃkµÄ·¶Î§£®
½â´ð£º½â£º£¨¢ñ£©Ò×Öª
|OB|
=b
|F1B|
=a
¡¢
|F1F2|
=2c
£¨ÆäÖÐc=
a2-b2
£©£¬
ÔòÓÉÌâÒâÖªÓÐa2=2bc£®ÓÖ¡ßa2=b2+c2£¬ÁªÁ¢µÃb=c£®¡àa=
2
b
£®
¡ß
|F1B|
|F1F2|
= 2
£¬¡à2accos45¡ã=2
¡àb2=1a2=2£®
¹ÊÍÖÔ²CµÄ·½³ÌΪ
x2
2
+y2=1
£®
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+b£¬M¡¢N×ø±ê·Ö±ðΪM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£®
ÓÉ
x2
2
+y2=1
y=kx+b
?£¨1+2k2£©x2+4kbx+2b-2=0£®
¡àx2+x1=-
4kb
1+2k2
£¬x1x2=
2b2-2
1+2k2
£®
¡ßk1=
y1+1
x1
£¬k2=
y2+1
x2
£®
¡àk1k2=
(k1+1+b)
x1
(kx2+1+b)
x2
=
k2x1x2+(1+b)k(x1+x2)+(1+b)2
x1x2
=
3
2

½«Î¤´ï¶¨Àí´úÈ룬²¢ÕûÀíµÃ
2k2(b-1)-4k2b+(1+2k2) (b+1)
b-1
=3£¬½âµÃb=2£®
¡àÖ±ÏßlÓëyÖáÏཻÓÚ¶¨µã£¨0£¬2£©£®

£¨III£©ÓÉ£¨¢ò£©ÖУ¨1+2k2£©x2+8kx+6=0£¬ÆäÅбðʽ¡÷£¾0£¬µÃk2£¾
3
2
£®¢Ù
ÉèÏÒABµÄÖеãP×ø±êΪ£¨x0£¬y0£©£¬Ôòx0=-
4kb
1+2k2
£¬y0=k0+2=
2
1+2k2
£¾0
£¬
¡àpµãÔÚxÖáÉÏ·½£¬Ö»ÐèλÓÚÈý½ÇÐÎMF1F2ÄھͿÉÒÔ£¬¼´Âú×ã
y0¡Üx0+1
y0¡Ü-x0+1
½«×ø±ê´úÈ룬ÕûÀíµÃ
2k2-4k+1¡Ý0
2k2+4k+1¡Ý0

½âµÃ
k¡Ý1+
6
2
»òk¡Ü1-
6
2
k¡Ý-1+
6
2
»ò K¡Ü-1-
6
2
¢Ú
ÓÉ¢Ù¢ÚµÃËùÇó·¶Î§Îªk¡Ý1+
6?
2
»òK¡Ü-1-
6?
2
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣮¿¼²éÁËѧÉúת»¯Ó뻯¹é˼ÏëµÄÔËÓúͻù´¡ÖªÊ¶µÄÊìÁ·ÕÆÎÕ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼËùʾ£¬ÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÁ½¸ö½¹µãΪF1¡¢F2£¬¶ÌÖáÁ½¸ö¶ËµãΪA¡¢B£®ÒÑÖª|
OB
|
¡¢|
F1B
|
¡¢
|F1F2
|
³ÉµÈ±ÈÊýÁУ¬|
F1B
|
-
|F1F2
|
=2£¬ÓëxÖá²»´¹Ö±µÄÖ±ÏßlÓëC½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬¼ÇÖ±ÏßAM¡¢ANµÄбÂÊ·Ö±ðΪk1¡¢k2£¬ÇÒk1•k2=
3
2
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÇóÖ¤Ö±ÏßlÓëyÖáÏཻÓÚ¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬ÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊe=
2
2
£¬×ó½¹µãΪF1£¨-1£¬0£©£¬ÓÒ½¹µãΪF2£¨1£¬0£©£¬¶ÌÖáÁ½¸ö¶ËµãΪA¡¢B£®ÓëxÖá²»´¹Ö±µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬¼ÇÖ±ÏßAM¡¢ANµÄбÂÊ·Ö±ðΪk1¡¢k2£¬ÇÒk1k2=
3
2
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÇóÖ¤Ö±ÏßlÓëyÖáÏཻÓÚ¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£®
£¨3£©µ±ÏÒMNµÄÖеãPÂäÔÚ¡÷MF1F2ÄÚ£¨°üÀ¨±ß½ç£©Ê±£¬ÇóÖ±ÏßlµÄбÂʵÄÈ¡Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª°ëÍÖÔ²
y2
a2
+
x2
b2
=1£¨y¡Ý0£¬a£¾b£¾0£©ºÍ°ëÔ²x2+y2=b2£¨y¡Ü0£©×é³ÉµÄÇúÏßCÈçͼËùʾ£®ÇúÏßC½»xÖáÓÚµãA£¬B£¬½»yÖáÓÚµãG£¬H£¬µãMÊÇ°ëÔ²ÉÏÒìÓÚA£¬BµÄÈÎÒâÒ»µã£¬µ±µãMλÓڵ㣨
6
3
£¬-
3
3
£©Ê±£¬¡÷AGMµÄÃæ»ý×î´ó£¬Ôò°ëÍÖÔ²µÄ·½³ÌΪ
y2
2
+x2=1
£¨y¡Ý0£©
y2
2
+x2=1
£¨y¡Ý0£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬ÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊe=
2
2
£¬×ó½¹µãΪF1£¨-1£¬0£©ÓÒ½¹µãΪF2£¨1£¬0£©£¬¶ÌÖáÁ½¸ö¶ËµãΪA¡¢B£¬ÓëxÖá²»´¹Ö±µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬¼ÇÖ±ÏßAM¡¢ANµÄбÂÊ·Ö±ðΪk1£¬k2£¬ÇÒk1k2=
3
2
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»     
£¨2£©ÇóÖ¤Ö±ÏßlÓëyÖáÏཻÓÚ¶¨µã£¬²¢Çó³ö¶¨µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸