精英家教网 > 高中数学 > 题目详情

(Ⅰ)解不等式

(Ⅱ)设集合,集合,求.

 

【答案】

(Ⅰ)时解集为时解集为;(2).

【解析】

试题分析:(Ⅰ)先化为同底的对数不等式,再结合底数时指数函数的单调性进行分类求解;(2)先解对数不等式求出集合S,再求函数的值域,即集合T,最后结合集合的交、并运算求出.

试题解析:(Ⅰ)原不等式可化为:

时,.原不等式解集为

时,.原不等式解集为

(Ⅱ)由题设得:,

考点:指数型不等式、对数型不等式的求解及指数函数的值域问题,集合的基本运算.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解不等式:
(1)
x-42x+5
≤1

(2)|2x+1|+|x-2|>4.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式
1
x2-2
1
|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在非零实数集上的函数f(x)对任意非零实数x,y恒有f(xy)=f(x)+f(y),当x∈(0,+∞)时,f(x)为增函数,
且f(2)=1.
(1)求f(1),f(-1)的值,并求证:f(x)为偶函数;
(2)判断并证明f(x)在(-∞,0)的单调性;
(3)解不等式:f(x)-f(x-2)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(
x
)
=
1
x
+2
x

(1)求f(x)的表达式.
(2)设函数g(x)=aχ-
1
x2
+f(x),则是否存在实数a,使得g(x)为奇函数?说明理由;
(3)解不等式f(x)-χ>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=|2x+1|+|2x-3|.
(Ⅰ)解不等式f(x)≤6;
(Ⅱ)若关于x的不等式f(x)<|1-2a|有解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案