(本题满分18分,第1小题满分4分,第2小题满分6分,第3小 题满分8分. )
已知数列{
}满足:
,
为数列
的前
项和。
若{
}是递增数列,且
成等差数列,求
的值;
若
,且{
}是递增数列,{
}是递减数列,求数列{
}的通项公式;
若
,对于给定的正整数
,是否存在一个满足条件的数列
,使得
,如果存在,给出一个满足条件的数列,如果不存在,请说明理由。
科目:高中数学 来源:2015-2016学年江苏省沭阳县高二上学期期中考试数学试卷(解析版) 题型:解答题
已知集合
.
(1)求集合
;
(2)求证:
的充要条件为
;
(3)若命题
,命题
且
是
的充分不必要条件,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2015-2016年湖北武汉华中师大一附高二上期中文科数学卷(解析版) 题型:解答题
已知椭圆
的上顶点为(0,2),且离心率为
,
(Ⅰ)求椭圆C的方程;
(Ⅱ)证明:过圆
上一点
的切线方程为
;
(Ⅲ)从椭圆C上一点P向圆
上向引两条切线,切点为A,B,当直线AB分别与x轴、y轴交于M,N两点时,求
的最小值.
查看答案和解析>>
科目:高中数学 来源:2015-2016学年吉林省高二11月月考理科数学卷(解析版) 题型:解答题
(本小题满分12分)
过椭圆
的右焦点
作斜率
的直线交椭圆于
,
两点,且
与
共线.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设
为椭圆上任意一点,且
. 证明:
为定值.
查看答案和解析>>
科目:高中数学 来源:2016届湖南省株洲市高三上学期期中理科数学试卷(解析版) 题型:填空题
如图,在平面直角坐标系中,边长为
的一组正三角形
的底边
依次排列在
轴上(
与坐标原点重合)。设
是首项为
,公差为
的等差数列,若所有正三角形顶点
在第一象限,且均落在抛物线
上,则
的值为 .
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com