精英家教网 > 高中数学 > 题目详情
已知
a
=(-1,1)
b
=(λ+1,-2λ)
,若
a
b
,则λ=
1
1
分析:根据向量平行的充要条件,建立关于λ的等式,解之即可得到实数λ的值.
解答:解:∵
a
=(-1,1)
b
=(λ+1,-2λ)
,且
a
b

∴-1×(-2λ)=1×(λ+1),
解得λ=1.
故答案为:1
点评:本题给出向量含有λ的坐标式,在向量平行的情况下求实数λ的值.着重考查了向量平行的充要条件及其应用的知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(
2
,-1),
b
=(
2
2
,2).f(x)=x2+
a
2x+
a
b
,数列{an}满足a1=1,3an=f (an-1)+1
(n∈N,n≥2),数列{bn}前n项和为Sn,且bn=
1
an+3

(1)写出y=f (x)的表达式;
(2)判断数列{an}的增减性;
(3)是否存在n1,n2(n1,n2∈N*),使S n1≥1或S n2
1
4
,如果存在,求出n1或n2的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,1,0),
b
=(-1,0,2)
,若向量k
a
+
b
ka
-2
b
互相垂直,则k的值为
2或-
5
2
2或-
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(1,1),
AB
=(3,2)
,则B点坐标为
(4,3)
(4,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,命题p:函数y=ax在R上单调递减,q:设函数y=
2x-2a(x≥2a)
2a(x<2a)
,函数y>1恒成立,若p和q只有一个为真命题,则a的取值范围
0<a≤
1
2
或a≥1
0<a≤
1
2
或a≥1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
a
=(
2
,-1),
b
=(
2
2
,2).f(x)=x2+
a
2x+
a
b
,数列{an}满足a1=1,3an=f (an-1)+1
(n∈N,n≥2),数列{bn}前n项和为Sn,且bn=
1
an+3

(1)写出y=f (x)的表达式;
(2)判断数列{an}的增减性;
(3)是否存在n1,n2(n1,n2∈N*),使S n1≥1或S n2
1
4
,如果存在,求出n1或n2的值,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案