精英家教网 > 高中数学 > 题目详情

(本题满分12分)如图,在平面直坐标系中,已知椭圆,经过点,其中e为椭圆的离心率.且椭圆与直线 有且只有一个交点。

(Ⅰ)求椭圆的方程;

(Ⅱ)设不经过原点的直线与椭圆相交与AB两点,第一象限内的点在椭圆上,直线平分线段,求:当的面积取得最大值时直线的方程。

 

【答案】

(Ⅰ);(Ⅱ)

【解析】

试题分析:(Ⅰ)∵椭圆经过点,∴

,∴  

∴椭圆的方程为…………………………………………2分

又∵椭圆与直线 有且只有一个交点

∴方程有相等实根

    ∴ 

∴椭圆的方程为………………………………………………5分

(Ⅱ)由(Ⅰ)知椭圆的方程为 故

设不经过原点的直线的方程交椭圆

    ……………………………6分

  ………………7分       

直线方程为平分线段 

=解得 ……………………………………………8分

又∵点到直线的距离 

…………………………………………9分

    

由直线与椭圆相交于AB两点可得

求导可得,此时取得最大值

此时直线的方程……………………………………………12分

考点:本题主要考查椭圆标准方程,椭圆的几何性质,直线与椭圆的位置关系,直线方程,点到直线的距离。

点评:求椭圆的标准方程是解析几何的基本问题,涉及直线与椭圆的位置关系问题,常常运用韦达定理,本题属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届江西高安中学高二上期末考试理科数学试卷(解析版) 题型:解答题

(本题满分12分)

如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. 的中点.

(1)当时,求平面与平面的夹角的余弦值;

(2)当为何值时,在棱上存在点,使平面

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省八市高三3月联考理科数学试卷(解析版) 题型:解答题

(本题满分12分)如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,中点,上一个动点.

(Ⅰ)确定点的位置,使得

(Ⅱ)当时,求二面角的平

面角余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广西桂林中学高三7月月考试题理科数学 题型:解答题

(本题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.

 ⑴求异面直线PD与AE所成角的大小;

 ⑵求证:EF⊥平面PBC ;

 ⑶求二面角F—PC—B的大小..

 

 

查看答案和解析>>

科目:高中数学 来源:2011年湖南省招生统一考试文科数学 题型:解答题

 

(本题满分12分)

如图3,在圆锥中,已知的直径的中点.

(I)证明:

(II)求直线和平面所成角的正弦值.

 

 

查看答案和解析>>

科目:高中数学 来源:2010年海南省高三五校联考数学(文) 题型:解答题

(本题满分12分)

如图,三棱锥S—ABC中,AB⊥BC,D、E分别为AC、BC的中点,SA=SB=SC。

   (1)求证:BC⊥平面SDE;

   (2)若AB=BC=2,SB=4,求三棱锥S—ABC的体积。

 

查看答案和解析>>

同步练习册答案