精英家教网 > 高中数学 > 题目详情
设数列{an},{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}(n∈N+)是等差数列,数列{bn-2}(n∈N+)是等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)是否存在k∈N+,使ak-bk∈(0,
12
)
,若存在,求出k,若不存在,说明理由.
分析:(1)先求出等差数列的公差,再利用an+1-an=(a2-a1)+(n-1)×1=n-3,表示出an=a1+(a2-a1)+(a3-a1)+…+(an-an-1)即可求出数列{an}的通项公式;
同样先求出等比数列的公比,再利用bn-2=(b1-2)(
1
2
)n-1=4×(
1
2
)n-1
即可求{bn}的通项公式;
(2)先求出f(k)=ak-bk的表达式,并找到其单调区间的分界点,求出其函数值的范围即可得出结论.
解答:解:(1)由已知a2-a1=-2,a3-a2=-1
得公差d=-1-(-2)=1
所以an+1-an=(a2-a1)+(n-1)×1=n-3
故an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=6+(-2)+(-1)+0+…+(n-4)
=6+
[(-2)+(n-4)](n-1)
2

=
n2-7n+18
2

由已知b1-2=4,b2-2=2所以公比q=
1
2

所以bn-2=(b1-2)(
1
2
)n-1=4×(
1
2
)n-1

bn=2+8×(
1
2
)n

(2)设f(k)=ak-bk=(
1
2
k2-
7
2
k+9)-[2+8×(
1
2
)
k
]

=
1
2
[(k-
7
2
)
2
-
49
4
]-8×(
1
2
)k+7

所以当k≥4时,f(k)是增函数.
f(4)=
1
2
,所以当k≥4时f(k)≥
1
2

而f(1)=f(2)=f(3)=0,所以不存在k,使f(k)∈(0,
1
2
)
点评:本题主要考查等差数列与等比数列的基础知识及其应用.是对基础知识的综合考查,属于中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的首项为1,前n项和是Sn,存在常数A,B使an+Sn=An+B对任意正整数n都成立.
(1)设A=0,求证:数列{an}是等比数列;
(2)设数列{an}是等差数列,若p<q,且
1
Sp
+
1
Sq
=
1
S11
,求p,q的值.
(3)设A>0,A≠1,且
an
an+1
≤M
对任意正整数n都成立,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=0,4an+1=4an+2
4an+1
+1
,令bn=
4an+1

(1)试判断数列{bn}是否为等差数列?并求数列{bn}的通项公式;
(2)令Tn=
b1×b3×b5×…×b(2n-1)
b2×b4×b6×…b2n
,是否存在实数a,使得不等式Tn
bn+1
2
log2(a+1)
对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由.
(3)比较bnbn+1bn+1bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,n=1,2,3…,其中A,B为常数.数列{an}的通项公式为
an=5n-4
an=5n-4

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知ban-2n=(b-1)Sn
(1)证明:当b=2时,{an-n•2n-1}是等比数列;
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式为an=an+b(n∈N*,a>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(1)若a=2,b=-3,求b10
(2)若a=2,b=-1,求数列{bm}的前2m项和公式.

查看答案和解析>>

同步练习册答案