ÉèÊýÁÐ{an}Âú×ãa1=0£¬4an+1=4an+2
4an+1
+1
£¬Áîbn=
4an+1
£®
£¨1£©ÊÔÅжÏÊýÁÐ{bn}ÊÇ·ñΪµÈ²îÊýÁУ¿²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÁîTn=
b1¡Áb3¡Áb5¡Á¡­¡Áb(2n-1)
b2¡Áb4¡Áb6¡Á¡­b2n
£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃ²»µÈʽTn
bn+1
£¼
2
log2(a+1)
¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©±È½Ïbnbn+1Óëbn+1bnµÄ´óС£®
·ÖÎö£º£¨1£©ÀûÓÃÒÑÖªÅä´Õ³ö4an+1+1¡¢4an+1¼´bn+1¡¢bnµÄÐÎʽ£¬È»ºó¸ù¾ÝµÈ²îÊýÁеĶ¨ÒåÇó½â£»
£¨2£©¹¹ÔìÊýÁÐcn=Tn
bn+1
£¬ÔÚ£¨1£©µÄ»ù´¡ÉÏ£¬Çó³öcn±í´ïʽ£¬ÀûÓÃcnµÄµ¥µ÷ÐÔÇó³öcnµÄ×î´óÖµ£¬´Ó¶øת»¯Îª²»µÈʽÇó½âÎÊÌ⣬½ø¶øÍê³É¶ÔaµÄ̽Ë÷£®
£¨3£©¹¹Ô캯Êýf(x)=
lnx
x
£¬ÀûÓú¯ÊýµÄµ¥µ÷ÐÔ·Ön¡Ü2ºÍn¡Ý3Á½ÖÖÇé¿ö̽Ë÷£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖªµÃan+1+
1
4
=(an+
1
4
)+
an+
1
4
+
1
4
£¬
¼´4an+1+1=4an+1+2
4an+1
+1
£¬£¨2·Ö£©
ËùÒÔbn+12=bn2+2bn+1£¬¼´bn+1=bn+1£¬
ÓÖb1=1£¬ËùÒÔÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬
ͨÏʽΪbn=n£¨n¡ÊN*£©£®
£¨2£©Áîcn=Tn
bn+1
£¬
ÓÉTn=
b1¡Áb3¡Áb5¡Á¡Áb(2n-1)
b2¡Áb4¡Áb6¡Áb2n
£¬
µÃ
cn+1
cn
=
1¡Á3¡Á5¡Á¡Á(2n+1)
2¡Á4¡Á6¡Á¡Á(2n+2)
n+2
1¡Á3¡Á5¡Á¡Á(2n-1)
2¡Á4¡Á6¡Á¡Á2n
n+1
=
2n+1
2n+2
¡Á
n+2
n+1

=
(n+2)(2n+1)2
(2n+2)2(n+1)
=
4n3+12n2+9n+2
4n3+12n2+12n+4
£¼1

ËùÒÔ£¬ÊýÁÐ{cn}Ϊµ¥µ÷µÝ¼õÊýÁУ¬£¨8·Ö£©
ËùÒÔÊýÁÐ{cn}µÄ×î´óÏîΪc1=
2
2
£¬
Èô²»µÈʽTn
bn+1
£¼
2
log2(a+1)
¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬Ö»Ðè
2
2
£¼
2
log2(a+1)
£¬
½âµÃa£¾
2
-1
£¬
ËùÒÔaµÄÈ¡Öµ·¶Î§Îª£¨
2
-1£¬+¡Þ£©£®£¨12·Ö£©
£¨3£©ÎÊÌâ¿Éת»¯Îª±È½Ïnn+1Ó루n+1£©nµÄ´óС£®
É躯Êýf(x)=
lnx
x
£¬ËùÒÔf¡ä(x)=
1-lnx
x2
£®
µ±0£¼x£¼eʱ£¬f'£¨x£©£¾0£»
µ±x£¾eʱ£¬f'£¨x£©£¼0£®ËùÒÔf£¨x£©ÔÚ£¨0£¬e£©ÉÏΪÔöº¯Êý£»ÔÚ£¨e£¬+¡Þ£©ÉÏΪ¼õº¯Êý£®
µ±n=1£¬2ʱ£¬ÏÔÈ»ÓÐnn+1£¼£¨n+1£©n£¬
µ±n¡Ý3ʱ£¬f£¨n£©£¾f£¨n+1£©£¬¼´
lnn
n
£¾
ln(n+1)
n+1
£¬
ËùÒÔ£¨n+1£©lnn£¾nln£¨n+1£©£¬¼´lnnn+1£¾ln£¨n+1£©n£¬
ËùÒÔnn+1£¾£¨n+1£©n£®
×ÛÉÏ£ºµ±n=1£¬2ʱ£¬nn+1£¼£¨n+1£©n£¬¼´bnbn+1£¼bn+1bn£»
µ±n¡Ý3ʱ£¬nn+1£¾£¨n+1£©n¼´bnbn+1£¾bn+1bn£®£¨16·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÊýÁС¢º¯Êý¡¢µ¼Êý¡¢²»µÈʽµÈ»ù´¡ÖªÊ¶£¬·ÖÀàÌÖÂÛ¡¢»¯¹é˼ÏëµÈÊýѧ˼Ïë·½·¨£¬ÒÔ¼°ÍÆÀí¡¢·ÖÎöÓë½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}Âú×ãa1=1£¬ÇÒ¶ÔÈÎÒâµÄn¡ÊN*£¬µãPn£¨n£¬an£©¶¼ÓÐ
.
PnPn+1
=(1£¬2)
£¬ÔòÊýÁÐ{an}µÄͨÏʽΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÈÕÕÕһģ£©ÈôÊýÁÐ{bn}£º¶ÔÓÚn¡ÊN*£¬¶¼ÓÐbn+2-bn=d£¨³£Êý£©£¬Ôò³ÆÊýÁÐ{bn}Êǹ«²îΪdµÄ×¼µÈ²îÊýÁУ®È磺Èôcn=
4n-1£¬µ±nΪÆæÊýʱ
4n+9£¬µ±nΪżÊýʱ.
Ôò{cn}
Êǹ«²îΪ8µÄ×¼µÈ²îÊýÁУ®
£¨I£©ÉèÊýÁÐ{an}Âú×㣺a1=a£¬¶ÔÓÚn¡ÊN*£¬¶¼ÓÐan+an+1=2n£®ÇóÖ¤£º{an}Ϊ׼µÈ²îÊýÁУ¬²¢ÇóÆäͨÏʽ£º
£¨¢ò£©É裨I£©ÖеÄÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÊÔÑо¿£ºÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃÊýÁÐSnÓÐÁ¬ÐøµÄÁ½ÏµÈÓÚ50£®Èô´æÔÚ£¬ÇëÇó³öaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÈÕÕÕһģ£©ÈôÊýÁÐ{bn}£º¶ÔÓÚn¡ÊN*£¬¶¼ÓÐbn+2-bn=d£¨³£Êý£©£¬Ôò³ÆÊýÁÐ{bn}Êǹ«²îΪdµÄ×¼µÈ²îÊýÁУ®ÈçÊýÁÐcn£ºÈôcn=
4n-1£¬µ±nΪÆæÊýʱ
4n+9£¬µ±nΪżÊýʱ
£¬ÔòÊýÁÐ{cn}Êǹ«²îΪ8µÄ×¼µÈ²îÊýÁУ®ÉèÊýÁÐ{an}Âú×㣺a1=a£¬¶ÔÓÚn¡ÊN*£¬¶¼ÓÐan+an+1=2n£®
£¨¢ñ£©ÇóÖ¤£º{an}Ϊ׼µÈ²îÊýÁУ»
£¨¢ò£©ÇóÖ¤£º{an}µÄͨÏʽ¼°Ç°20ÏîºÍS20£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}Âú×ãa1=1£¬a2+a4=6£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬º¯Êýf£¨x£©=£¨an-an+1+an+2£©x+an+1?cosx-an+2sinxÂú×ãf¡ä(
¦Ð
2
)=0
Èôcn=an+
1
2an
£¬ÔòÊýÁÐ{cn}µÄÇ°nÏîºÍSnΪ£¨¡¡¡¡£©
A¡¢
n2+n
2
-
1
2n
B¡¢
n2+n+4
2
-
1
2n-1
C¡¢
n2+n+2
2
-
1
2n
D¡¢
n2+n+4
2
-
1
2n

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}Âú×㣺a1=2£¬an+1=1-
1
an
£¬ÁîAn=a1a2¡­an£¬ÔòA2013
=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸