精英家教网 > 高中数学 > 题目详情

等比数列{an}中,已知a1+a2+a3=4,a2+a3+a4=-2,则a3+a4+a5+a6+a7+a8=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:先根据q=求出q的值,再根据a3+a4+a5=(a2+a3+a4)•q和a6+a7+a8=(a3+a4+a5)q3,分别求得a3+a4+a5和a6+a7+a8的值,进而求出a3+a4+a5+a6+a7+a8值.
解答:由于q===-
所以a3+a4+a5=(a2+a3+a4)×(-)=1,
a6+a7+a8=(a3+a4+a5)×(-3=-
于是a3+a4+a5+a6+a7+a8=
故选D
点评:本题主要考查了等比数列的性质.本题的关键是利用了a3+a4+a5=(a2+a3+a4)•q和a6+a7+a8=(a3+a4+a5)q3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}中,a2=18,a4=8,则公比q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设数列{an}的前n项和为Sn,证明:Sn<n-ln(n+1);
(Ⅲ)设bn=an
9
10
n,证明:对任意的正整数n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a3=2,a7=32,则a5=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,an=2×3n-1,则由此数列的奇数项所组成的新数列的前n项和为
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知对n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于(  )

查看答案和解析>>

同步练习册答案