精英家教网 > 高中数学 > 题目详情
5.点(3,1)到直线3x-4y=2的距离是$\frac{3}{5}$.

分析 利用点到直线的距离公式即可得出.

解答 解:点(3,1)到直线3x-4y=2的距离d=$\frac{|3×3-1×4-2|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{3}{5}$.
故答案为:$\frac{3}{5}$.

点评 本题考查了点到直线的距离公式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设全集U=R,M={x|y=2x+1},N={y|y=-x2},则M和N的关系是(  )
A.M$\underset{?}{≠}$NB.M∩N={(-1,1)}C.M=ND.N$\underset{?}{≠}$M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数是幂函数的是(  )
A.y=2x2B.y=x3+xC.y=3xD.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,若(b-bcosB)sinA=a(sinB-sinCcosC),则这个三角形是(  )
A.等腰直角三角形B.底角不等于45°的等腰三角形
C.等腰三角形或直角三角形D.锐角不等于45°的直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期12月1日12月2日12月3日12月4日12月5日
温差x (℃)101113128
发芽数y(颗)2325302616
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+a已知回归直线方程是:$\stackrel{∧}{y}$=bx+a,其中b=$\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i-1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知0<a<1,b<-1,则函数y=ax+b的图象必定不经过第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将参数方程$\left\{\begin{array}{l}x=-2+{cos^2}θ\\ y={cos^2}θ\end{array}\right.$(θ为参数)化为普通方程为(  )
A.y=x-2B.y=x-2(0≤y≤1)C.y=x+2(-2≤x≤-1)D.y=x+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=t}\end{array}\right.$ (t为参数),圆C的极坐标方程为ρ=2cos θ,则圆C的圆心到直线l的距离为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{4}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若函数f(x)满足f(x-y)=$\frac{f(x)}{f(y)}$,f(x)≠0,且x>0时,f(x)>1,已知f(4)=16.
(1)求f(0)和f(2)的值;
(2)求使不等式f(2x-3)f(2-3x)≤4成立的x的取值范围.

查看答案和解析>>

同步练习册答案