精英家教网 > 高中数学 > 题目详情

【题目】某单位280名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.
(I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第1,2,3组的员工人数分别是多少?
(II)为了交流读书心得,现从上述12人中再随机抽取3人发言,设3人中年龄在[35,40)的人数为ξ,求ξ的数学期望;
(III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)

喜欢阅读国学类

不喜欢阅读国学类

合计

14

4

18

8

14

22

合计

22

18

40

根据表中数据,我们能否有99%的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?
附: ,其中n=a+b+c+d

P(K2≥k0

0.05

0.025

0.010

0.005

0.001

k0

3.841

5.024

6.635

7.879

10.828

【答案】解:(Ⅰ)由频率分布直方图得前三组的人数分别为:0.02×5×280=28,28,

[1﹣(0.02+0.02+0.06+0.02)×5]×280=112

所以前三组抽取的人数分别为 ,2,8

(II)由上可知,ξ的所有可能取值为0,1,2,3,其概率分别为

所以,

(Ⅲ)假设H0:“是否喜欢看国学类书籍和性别无关系”,根据表中数据,

求得K2的观测值

查表得P(K2≥6.635)=0.01,从而能有99%的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系


【解析】(Ⅰ)由频率分布直方图得前三组的人数,即可求出年龄在第1,2,3组的员工人数分别是多少;(II)由上可知,ξ的所有可能取值为0,1,2,3,求出其概率,即可求ξ的数学期望;(III)求得K2的观测值,查表得P(K2≥6.635)=0.01,即可得出结论.
【考点精析】掌握频率分布直方图是解答本题的根本,需要知道频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( ) ①对任意实数a,b,函数y=f(x)在R上是单调函数;
②对任意实数a,b,函数y=f(x)在R上都不是单调函数;
③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;
④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.
A.①③
B.②③
C.①④
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将参加冬季越野跑的600名选手编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,把编号分50组后,在第一组的001到012这12个编号中随机抽得的号码为004.这600名选手分穿着三种颜色的衣服,从001到301穿红色衣服,从302到496穿白色衣服,从497到600穿黄色衣服.则抽到穿白色衣服的选手人数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四数a1 , a2 , a3 , a4依次成等比数列,且公比q不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q的取值集合是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且f(x+2)=f(x)对x∈R恒成立,当x∈[0,1]时,f(x)=2x , 则 =(
A.
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)设f(x)=x2﹣x+1,实数a满足|x﹣a|<1,求证:|f(x)﹣f(a)|<2(|a+1|)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,则a25﹣a1=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,四边形ACC1A1BCC1B1均为正方形,且所在平面互相垂直.

(Ⅰ)求证:BC1AB1

(Ⅱ)求直线BC1与平面AB1C1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C1 =1和C2:x2+ =1.P为C1上的动点,Q为C2上的动点,w是 的最大值.记Ω={(P,Q)|P在C1上,Q在C2上,且 =w},则Ω中元素个数为(
A.2个
B.4个
C.8个
D.无穷个

查看答案和解析>>

同步练习册答案