精英家教网 > 高中数学 > 题目详情
1.如图,正方形ABCD与正方形ABEF边长均为1,且平面ABCD⊥平面ABEF,点M在AC上移动,点N在BF上移动,若CM=BN=α(0<α<$\sqrt{2}$)
(1)求MN的长度;
(2)当α为何值时,MN的长最小.

分析 (1)过M作MP⊥AB,垂足为P,连接PN.运用平行线成比例可得PN∥AF,再由面面垂直的性质定理,可得AD⊥AF,根据勾股定理,我们易得MN2=MP2+PN2,可得MN的长度;
(2)由二次函数的性质,易得到MN的最小值.

解答 解:(1)过M作MP⊥AB,垂足为P,连接PN.
∵$\frac{AM}{MC}$=$\frac{AP}{PB}$,$\frac{AM}{MC}$=$\frac{FN}{NB}$,∴$\frac{AP}{PB}$=$\frac{FN}{NB}$,
∴PN∥AF,
平面ABCD⊥平面ABEF,AB⊥AD,
可得AD⊥平面BF,即有AD⊥AF,
即有∠MPN=90°MP=1-$\frac{\sqrt{2}}{2}$a,PN=$\frac{\sqrt{2}}{2}$a,
由勾股定理知:MN2=MP2+PN2=(1-$\frac{\sqrt{2}}{2}$a)2+($\frac{\sqrt{2}}{2}$a)2
=a2-$\sqrt{2}$a+1=(a-$\frac{\sqrt{2}}{2}$)2+$\frac{1}{2}$,
则MN=$\sqrt{{a}^{2}-\sqrt{2}a+1}$(0<a<$\sqrt{2}$);
(2)MN2=a2-$\sqrt{2}$a+1=(a-$\frac{\sqrt{2}}{2}$)2+$\frac{1}{2}$,
当a=$\frac{\sqrt{2}}{2}$时,MN取得最小值为$\frac{\sqrt{2}}{2}$.

点评 本题考查的知识点是空间中两点之间的距离运算,关键是将空间两点间的距离表示成a的函数,进而转化成求函数最值的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知$cos(θ+\frac{π}{6})=a(|a|≤1)$,函数f(x)=$\frac{2}{3}$sin(x-$\frac{π}{3}$),
(1)求f(θ)的值
(2)求f(x)在$x∈[\frac{π}{2},\;π]$上的最大值及取最大值时x的取值
(3)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y=2sin(2x+\frac{π}{3})$的图象(  )
A.关于原点对称B.关于点($\frac{π}{6}$,0)对称
C.关于y轴对称D.关于直线$x=\frac{π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|(x+1)(x-2)≤0},B={x|-2<x<2},则A∩B=(  )
A.{x|-1≤x≤2}B.{x|-1≤x<2}C.{x|-1<x<2}D.{x|-2<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果已知sinα•cosα<0,sinα•tanα<0,那么角$\frac{α}{2}$的终边在(  )
A.第一或第二象限B.第一或第三象限C.第二或第四象限D.第四或第三象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=-cos2x+$\sqrt{3}$cosx+$\frac{5}{4}$,则(  )
A.最大值是$\frac{5}{4}$,最小值是1B.最大值是1,最小值是$\frac{1}{4}$-$\sqrt{3}$
C.最大值是2,最小值是$\frac{1}{4}$-$\sqrt{3}$D.最大值是2,最小值是$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知A为三角形的一个内角,且cosA=-$\frac{1}{2}$,则角A为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xoy中,己知圆C1:(x+3)2+(y-1)2=25和圆C2:(x-4)2+(y-2)2=4.
(1)判断两圆的位置关系:
(2)求过两圆的圆心的直线的方程:
(3)若直线m过圆C1的圆心,且被圆C2截得的弦长为2$\sqrt{3}$,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的面积为3,且满足2$\sqrt{3}$≤$\overrightarrow{AB}$•$\overrightarrow{AC}$≤6,设$\overrightarrow{AB}$、$\overrightarrow{AC}$的夹角为θ.
(1)求θ的取值范围;
(2)求函数f(θ)=2sin2($\frac{π}{4}$+θ)-cos2θ的最小值.

查看答案和解析>>

同步练习册答案