精英家教网 > 高中数学 > 题目详情
19.在空间直角坐标系中,点A(3,4,-5)关于x轴的对称点的坐标是(3,-4,5).

分析 先根据空间直角坐标系对称点的特征,点(x,y,z)关于x轴的对称点的坐标为只须将横坐标、竖坐标变成原来的相反数即可,即可得对称点的坐标.

解答 解:∵在空间直角坐标系中,
点(x,y,z)关于x轴的对称点的坐标为:(x,-y,-z),
∴点(3,4,-5)关于x轴的对称点的坐标为:(3,-4,5).
故答案为:(3,-4,5)

点评 本小题主要考查空间直角坐标系、空间直角坐标系中点的坐标特征等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)是实数集R上的奇函数,当x>0时,f(x)=x2+x.
(1)求f(-1)的值;
(2)求函数f(x)的表达式;
(3)解不等式:f(2x-1)<f(1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的中点,则四面体A1PQD的正视图、侧视图和俯视图的面积之和为(  )
A.$\frac{5}{4}$B.2C.$\frac{9}{4}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有5名学生的数学和化学成绩如表所示:
学生学科ABCDE
数学成绩(x)8876736663
化学成绩(y)7865716461
(1)如果y与x具有相关关系,求线性回归方程;
(2)预测如果某学生数学成绩为79分,他的化学成绩为多少?
参考公式::$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知角α的终边过点P(4,-3),求2sinα+cosα的值.
(2)已知tanα=3,求下列各式的值
①$\frac{4sinα-cosα}{3sinα+5cosα}$,②$\frac{{{{sin}^2}α-sin2α}}{{4{{cos}^2}α-3{{sin}^2}α}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=(x-a)(x-3a)(其中a>0),g(x)=x2+1;条件p:实数x满足f(x)<0;条件q:实数x满足4<g′(x)≤6.
(1)若a=1,且“p∧q”为真,求实数x的取值范围;
(2)若q是p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b∈R,且a>b,则下列不等式正确的是(  )
A.2a>2bB.${(\frac{1}{3})^a}>{(\frac{1}{3})^b}$C.a2>b2D.lg(a-b)>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=\frac{1}{3}{x^3}+a{x^2}+5bx$,若a,b是从集合{1,2,3,4}中任取两个不同的数,则使函数f(x)有极值点的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若A(-2,3),B(1,0),C(-1,m)三点在同一直线上,则m=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

同步练习册答案