精英家教网 > 高中数学 > 题目详情
11.已知a,b∈R,且a>b,则下列不等式正确的是(  )
A.2a>2bB.${(\frac{1}{3})^a}>{(\frac{1}{3})^b}$C.a2>b2D.lg(a-b)>0

分析 利用特殊值代入法,再根据函数函数的单调性,从而得出结论.

解答 解:由于函数y=2x 在R上是增函数,且a>b,故有 2a>2b
由于函数y=$\frac{1}{3}$x 在R上是减函数,且a>b,故有 $(\frac{1}{3})^{a}<(\frac{1}{3})^{b}$,
由于a,b∈R,且a>b,当a=1,b=-2时,显然不成立,a2>b2 不成立,
当0<a-b<1时,lg(a-b)<0,故lg(a-b)>0不成立.
故选 A.

点评 本题主要考查不等式与不等关系,指数函数的单调性,利用特殊值代入法,排除不符合条件的选项,是一种简单有效的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.过点P(-$\sqrt{3}$,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是(  )
A.[0,30°]B.[0,45°]C.[0,60°]D.[0,90°]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于1的概率为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{π}{4}$D.$\frac{3π}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在空间直角坐标系中,点A(3,4,-5)关于x轴的对称点的坐标是(3,-4,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:?x∈R,2x<3x;命题q:曲线y=2x2-7过点P(3,9)的切线斜率为12,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,设圆弧x2+y2=1(x≥0,y≥0)与两坐标轴正半轴围成的扇形区域为M,过圆弧上中点A做该圆的切线与两坐标轴正半轴围成的三角形区域为N.现随机在区域N内投一点B,若设点B落在区域M内的概率为P,则P的值为(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高二年级月考有600名学生参考,从年级月考数学成绩中随机抽取一个班的数学成绩(该班共50名同学),并统计了他们的数学成绩,数据如表:
成绩分组[85,95)[95,105)[105,115)[115,125)[125,135)[135,145)
频数101012864
(1)估计该班数学成绩的众数;
(2)估计该次月考中年级数学125分以上的学生人数;
(3)估计该班数学平均成绩(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-1,x≥a}\\{-{x}^{2}+2x-1,x<a}\end{array}\right.$对于任意的实数b,函数y=f(x)-b至多有一个零点,则实数a的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知O为坐标原点,点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点.
(1)求线段AB的最短长度;
(2)若线段AB的中点为M,求M的轨迹方程.

查看答案和解析>>

同步练习册答案